矩阵分析与应用(18)

学习来源:《矩阵分析与应用》 张贤达 清华大学出版社

共轭梯度与无约束最优化

1. 标量函数相对于复向量的梯度

1)标量函数 f(x) 相对于 n\times 1 复向量 x 的梯度为 n\times 1 向量,定义为:

\frac{\partial f(x)}{\partial x}=\bigtriangledown_xf(x)=\left [ \frac{\partial f(x)}{\partial x_1},\frac{\partial f(x)}{\partial x_2},\cdots ,\frac{\partial f(x)}{\partial x_n} \right ]^T

2)类似的,标量函数 f(x) 相对于 n\times 1 复向量 x 的复数共轭向量 x^* 的梯度简称为共轭梯度,定义为:

\frac{\partial f(x)}{\partial x^*}=\bigtriangledown_{x^*}f(x)=\left [ \frac{\partial f(x)}{\partial x_1^*},\frac{\partial f(x)}{\partial x_2^*},\cdots ,\frac{\partial f(x)}{\partial x_n^*} \right ]^T

3)若 f(x)=\left [ f_1(x),f_2(x),\cdots ,f_m(x) \right ] 为 1\times n 复行向量函数,则 f(x) 相对于复列向量 x 的梯度为 n\times m 矩阵,定义为:

\frac{\partial f(x)}{\partial x}=\begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_1} & \cdots & \frac{\partial f_m(x)}{\partial x_1}\\ \frac{\partial f_1(x)}{\partial x_2} &\frac{\partial f_2(x)}{\partial x_2} &\cdots &\frac{\partial f_m(x)}{\partial x_2} \\ \vdots &\vdots & &\vdots \\ \frac{\partial f_1(x)}{\partial x_n} &\frac{\partial f_2(x)}{\partial x_n} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}

4)类似地,行向量函数 f(x) 相对于复共轭列向量 x^* 的梯度称为共轭梯度矩阵,定义为:

\frac{\partial f(x)}{\partial x^* }=\begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1^*} & \frac{\partial f_2(x)}{\partial x_1^*} & \cdots & \frac{\partial f_m(x)}{\partial x_1^*}\\ \frac{\partial f_1(x)}{\partial x_2^*} &\frac{\partial f_2(x)}{\partial x_2^*} &\cdots &\frac{\partial f_m(x)}{\partial x_2^*} \\ \vdots &\vdots & &\vdots \\ \frac{\partial f_1(x)}{\partial x_n^*} &\frac{\partial f_2(x)}{\partial x_n^*} & \cdots & \frac{\partial f_m(x)}{\partial x_n^*} \end{bmatrix}

5)由以上定义易得:

\frac{\partial x^T}{\partial x}=\frac{\partial x^H}{\partial x^*}=I

\frac{\partial x^T}{\partial x^*}=\frac{\partial x^H}{\partial x}=O

式中, I 和 O 分别代表单位矩阵和零矩阵。

2. 标量函数的共轭梯度公式

1)若 f(x)=c 为常数,则共轭梯度 

\frac{\partial c}{\partial x^*}=0

2)线性法则:若 f(x) 和 g(x) 分别是向量 x 的实值函数, c_1 和 c_2 为复常数,则

\frac{\partial \left [ c_1f(x)+c_2g(x) \right ]}{\partial x^*}=c_1\frac{\partial f(x)}{\partial x^*}+c_2\frac{\partial g(x)}{\partial x^*}

3)乘积法则:

①若 f(x) 和 g(x) 都是向量 x 的的实值函数,则

\frac{\partial f(x)g(x)}{\partial x^*}=g(x)\frac{\partial f(x)}{\partial x^*}+f(x)\frac{\partial g(x)}{\partial x^*}

②若 f(x)g(x) 和 h(x) 都是向量 x 的实值函数,则

\frac{\partial f(x)g(x)h(x)}{\partial x^*}=g(x)h(x)\frac{\partial f(x)}{\partial x^*}+f(x)g(x)\frac{\partial h(x)}{\partial x^*}+f(x)h(x)\frac{\partial g(x)}{\partial x^*}

4)商法则:若 g(x)\neq 0 ,则

\frac{\partial f(x)/g(x)}{\partial x^*}=\frac{1}{g^2(x)}\left [ g(x)\frac{\partial f(x)}{\partial x^*}-f(x)\frac{\partial g(x)}{\partial x^*} \right ]

5)链式法则:若 y(x) 是 x 的复向量值函数,则

\frac{\partial f(y(x))}{\partial x^*}=\frac{\partial [y(x)]^T}{\partial x^*}\frac{\partial f(y)}{\partial y}

式中, \frac{\partial [y(x)]^T}{\partial x^*} 为 n\times n 矩阵。

6)若 n\times 1 向量 a 为与 x 无关的常数向量,则

\frac{\partial a^Hx}{\partial x^*}=0,\quad \frac{\partial x^Ha}{\partial x^*}=a

7)令 A 是一个与向量 x 无关的矩阵,则

\frac{\partial x^HAx}{\partial x}=A^Tx^*,\quad \frac{\partial x^HAx}{\partial x^*}=Ax

\frac{\partial x^HAy}{\partial A}=x^*y^T,\quad \frac{\partial x^HAx}{\partial A}=x^*x^T

3. 迹函数的共轭梯度

1)迹函数对复共轭向量 x^* 或者复共轭矩阵 A^* 求梯度时,通常都是先求出迹函数相对于元素 x_i^* 或者 A_{ij}^* 的偏导。然后再把偏导写成向量或者矩阵的形式,得到迹函数的共轭向量或者共轭矩阵。

        令 x 和 A 分别为 n\times 1 复向量和 n\times n 复矩阵。易得

\left [ x^HA \right ]_j=\sum_{k=1}^{n}x_k^*a_{kj} \quad \Rightarrow \quad \left [ xx^HA \right ]_{ij}=\sum_{k=1}^{n}x_ix_k^*A_{kj}

tr(xx^HA)=\sum_{i=1}^{n}\sum_{k=1}^{n}x_k^*a_{ki}x_i=x^HAx

        类似地,有

[Ax]_i=\sum_{k=1}^{n}a_{ik}x_k\quad \Rightarrow \quad [Axx^H]_{ij}=\sum_{k=1}^{n}a_{ik}x_kx_j^*

tr(Axx^H)=\sum_{i=1}^{n}\sum_{k=1}^{n}a_{ik}x_kx_i^*=x^HAx

所以

f(x)=x^HAx=tr(xx^HA)=tr(Axx^H)

由 \frac{\partial x^HAx}{\partial x^*}=Ax ,可得

\frac{\partial tr(xx^HA)}{\partial x^*}=\frac{\partial tr(Axx^H)}{\partial x^*}=Ax

2)迹函数的共轭梯度常用公式

\frac{\partial tr(yx^H)}{\partial x^*}=\frac{\partial tr(x^Hy)}{\partial x^*}=y

\frac{\partial tr(BA^H)}{\partial A^*}=\frac{\partial tr(A^HB)}{\partial A^*}=B

\frac{\partial tr(A^H)}{\partial A^*}=I,\quad \frac{\partial tr(A)}{\partial A^*}=O

\frac{\partial tr(A^HWA)}{\partial A^*}=WA,\quad \frac{\partial tr(AWA^H)}{\partial A^*}=AW

4. 例

        在 CDMA 系统中,共有 K 个用户在通信,每个用户的扩频波形向量为复向量 s_k(t) ,接收信号向量 y 也为复向量。此时,设计多用户检测器 M 的目标函数为

                                                        J(M)=E\left \{ \left \| b-My \right \|_2^2 \right \}

                                                                   =tr(cov(b-My))

                                                                   =tr(I)+tr(M(RA^2R+\sigma ^2R)M^H)-tr(ARM^H)-tr(MRA)

由迹函数共轭梯度的常用公式可得

\frac{\partial j(M)}{\partial M^*}=M(RA^2R+\sigma ^2R)-AR

令共轭梯度为零,并假定 R 非奇异,则有

M=A(RA^2+\sigma ^2I)^{-1}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值