学习来源:《矩阵分析与应用》 张贤达 清华大学出版社
奇异值分解
1. 特征值分解(EVD)
对于一个对称矩阵来说,它能相似对角化,且对称矩阵的不同特征值对应的特征向量两两正交。设矩阵 为满秩对称矩阵,有
个不同的特征值,为
,特征值对应的特征向量为
,则
所以有
其中,
由于 为对称矩阵,所以
的特征向量两两正交,即
为正交矩阵,因此
。
所以可以得到矩阵 的特征值分解:
2. 奇异值分解
回顾一下矩阵奇异值分解的定义:
设 ,则存在
阶正交矩阵
和
阶正交矩阵
使得
其中, ,而
为
的非零奇异值。
1) 矩阵求解
由 ,
可得
。
因为 是一个
方阵,可以进行特征值分解,因此
,
由
的特征值对应的特征向量组成。
2) 矩阵求解
由 ,
可得
。
是
方阵,可由特征值分解知道
由
的特征值对应的特征向量组成。
3. 例
求解矩阵 的奇异值分解。
1)
特征值为 。
对应的特征向量为
,
对应的特征向量为
因此 ,且
。
2)
对应的特征向量为
,
对应的特征向量为
因此
。
3)矩阵 的奇异值分解为