学习来源:《矩阵分析与应用》 张贤达 清华大学出版社
奇异值分解
1. 特征值分解(EVD)
对于一个对称矩阵来说,它能相似对角化,且对称矩阵的不同特征值对应的特征向量两两正交。设矩阵 为满秩对称矩阵,有 个不同的特征值,为 ,特征值对应的特征向量为 ,则
所以有
其中,
由于 为对称矩阵,所以 的特征向量两两正交,即 为正交矩阵,因此 。
所以可以得到矩阵 的特征值分解:
2. 奇异值分解
回顾一下矩阵奇异值分解的定义:
设 ,则存在 阶正交矩阵 和 阶正交矩阵 使得
其中, ,而 为 的非零奇异值。
1) 矩阵求解
由 , 可得 。
因为 是一个 方阵,可以进行特征值分解,因此 , 由 的特征值对应的特征向量组成。
2) 矩阵求解
由 , 可得 。
是 方阵,可由特征值分解知道 由 的特征值对应的特征向量组成。
3. 例
求解矩阵 的奇异值分解。
1)
特征值为 。
对应的特征向量为 , 对应的特征向量为
因此 ,且 。
2)
对应的特征向量为 , 对应的特征向量为
因此
。
3)矩阵 的奇异值分解为