学习来源:《矩阵分析与应用》 张贤达 清华大学出版社
矩阵分析与应用学习小结
一、向量的范数
1. 定义
向量的范数是用来刻画向量大小的一种度量。设映射 满足:
① 非负性: ,当且仅当 时, ;
② 其次性: ;
③ 三角不等式: 。
则称映射 为 上向量 的范数。
2. 向量的 1 范数
向量的 1 范数是指向量中所有元素的绝对值之和,用公式表示为
其中
例:
3.向量的 2 范数
向量的 2 范数又称欧几里得范数,表示通常意义上的模,用公式表示为
其中, 。
例:
二、矩阵的范数
1. 定义
由于一个 矩阵可以看做 维向量,因此可以按照定义向量范数的方式定义矩阵范数。
设 表示复数域 上全体 矩阵构成的线性空间,设函数 满足:
① 非负性: ,当且仅当 时, ;
② 齐次性: ;
③ 三角不等式: ;
④ 相容性: 。
则称 为矩阵 的范数。
2. 矩阵的 1 范数
矩阵的 1 范数是矩阵的每一列上的元素绝对值先求和,再从中取最大值(列和最大)。用公式表示为:
其中, 。
3. 矩阵的 2 范数
矩阵的 2 范数是矩阵 的最大特征值开平方,用公式表示为:
其中, , 为 的最大特征值。
4. 矩阵的 F 范数
矩阵的 F 范数是矩阵的所有元素的平方和开根号,用公式表示为:
其中, 。
5. 矩阵的无穷范数
矩阵的无穷范数是矩阵的每一行上的元素绝对值先求和,再从中取最大值(行和最大)。用公式表示为:
其中, 。
6. 例
1)矩阵
2)矩阵