1、为什么要经常对数据做特征归一化

特征归一化是数据预处理的关键步骤,尤其在使用梯度下降的模型中。它消除特征尺度差异,提升模型收敛速度。常见的归一化方法包括均值归一化和min-max归一化。类别型特征通常通过序列编码、one-hot编码或二进制编码转化为数值型。特征组合用于揭示数据的复杂关系,而高维组合特征可以通过PCA、LDA等降维技术处理。

前言:

feature scaling 即为特征归一化、标准化,是数据预处理中的重要技术。在实际运用中,使用梯度下降算法的模型都需要归一化,包括线性回归、逻辑回归、支持向量机、神经网络等模型。但对决策树模型并不适用,因为信息增益、信息增益比、基尼指数跟特征是否经过归一化是无关的。

1、归一化的原因

  • 对数据做特征归一化是为了消除特征尺度不同所带来的影响,使特征具有可比性。
  • 数值归一化后能加快收敛速度,更容易找到梯度下降的最优解。在基于梯度更新对模型求解的过程中,未归一化的数值特征在求解时,梯度下降较为抖动,模型难以收敛,而归一化后的数值特征较为稳定,进而减少梯度下降的次数,模型更容易收敛。
    在这里插入图片描述

2、常用的feature scaling

  • Mean Normalization(均值归一化)
    在这里插入图片描述
  • min-max normalization
    在这里插入图片描述

3、类别型特征转换为数值型特征

  • 序列编码
  • one-hot编码

对于类别取值较多(转换成onehot编

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值