一、Adaboost的特性
- Adaboost对每一个样本分配权重,对每一轮的弱分类器也分配一个权重。
- Adaboost通过分类误差率来更新下一轮的样本权重,即提高被误分类的样本权重,并降低被正确分类的样本权重,使得没有被正确分类的样本在后一轮训练时获得更多的关注。
- 对基分类器分配权重,加大误差率较小的弱分类器权重,使其在表决中起较大的作用。
二、Adaboost算法
- 输入:训练数据集T = {(x1, y1), (x2, y2), (x3,y3),…(xn,yn)},其中xi ∈ X ⊆ Rn, yi ∈ Y ∈ {-1, 1},
- 输出:最终分类器G(x)
(1)初始化训练集的权值分布:D1= {W11,…,W1I,…W1n}, 其中W1i = 1/N,i = 1, 2, …, N
(2)对于 m = 1,2…,M
- (一) 使用具有权值分布Dm的训练数据集进行学习,得到基本分类器
Gm(x): X—>{-1, 1} - (二) 计算Gm(x)在训练数据集上的分类误差率: