机器学习之Adaboost笔记

一、Adaboost的特性

  • Adaboost对每一个样本分配权重,对每一轮的弱分类器也分配一个权重。
  • Adaboost通过分类误差率来更新下一轮的样本权重,即提高被误分类的样本权重,并降低被正确分类的样本权重,使得没有被正确分类的样本在后一轮训练时获得更多的关注。
  • 对基分类器分配权重,加大误差率较小的弱分类器权重,使其在表决中起较大的作用。

二、Adaboost算法

  • 输入:训练数据集T = {(x1, y1), (x2, y2), (x3,y3),…(xn,yn)},其中xi ∈ X ⊆ Rn, yi ∈ Y ∈ {-1, 1},
  • 输出:最终分类器G(x)
(1)初始化训练集的权值分布:D1= {W11,…,W1I,…W1n}, 其中W1i = 1/N,i = 1, 2, …, N
(2)对于 m = 1,2…,M
  • (一) 使用具有权值分布Dm的训练数据集进行学习,得到基本分类器
    Gm(x): X—>{-1, 1}
  • (二) 计算Gm(x)在训练数据集上的分类误差率:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值