线性回归算法

本文详细介绍了线性回归算法,包括数据形式、误差项分布、寻找最佳线或平面的似然函数与对数似然方法,以及评估模型的R^2指标。探讨了在无法求偏导时使用梯度下降法优化权重参数,并比较了批量、随机和小批量梯度下降的不同之处。
摘要由CSDN通过智能技术生成

通过已知数据,回归得出一条线或平面。

 

问题:

计算机处理数据时数据的形式是什么

误差项服从怎样的分布

我们怎样找到最合适的线或平面,过程是怎样的

(似然函数,对数似然,目标函数)

怎样评估我们最后得到的线或平面

 

过程:

数据已有,那么我们需要得知的是系数,有多少个维度(变量)也就需要多少个系数,外加一个偏置项(也叫偏置参数)。

其实偏置项也是我们理解的y=kx+b 中 的 b,单单靠kx我们还是和y有差距,那么就加上b。

偏置项就是可以取任何的预测值。在训练过程中,就可以不断优化我们的预测值。

因为计算机进行计算使用矩阵更方便,因此,偏置项作为系数,对应的变量,是一个全为1的变量,

所以在我们进行处理的时候通常会需要先进行补偿一个全为1 的列。

此时,变量和系数组合为矩阵了。

 

但是我们知道,我们的预测值和实际值总会相差一点,也就是误差项。那么误差项也可以用我们的预测值和实际值来表示。

对于误差项,需要补充的是,误差项,对于每一条数据都会有自己的误差项。

那么所有的误差项都是独立同分布的,而且是均值为0,方差为 斯塔平方 的高斯分布

独立:每个误差项互不影响

同分布:都是服从该高斯分布

(此处事实上没办法都认为都是,但绝大部分情况下成立)

 

对于我们来说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值