个人简单理解 SVM支持向量机

本文介绍了SVM(支持向量机)的基本概念,强调它寻找最佳决策边界的特性。通过线性与非线性案例,解释了如何利用支持向量确定边界,并探讨了松弛因子和核函数的作用,特别是高斯核函数在防止过拟合中的应用。
摘要由CSDN通过智能技术生成

 SVM支持向量机 Support vector machine

像逻辑回归,解决的是二分类问题

(先讲解线性的 , 后面是非线性的)

SVM想要找的是能把两类数据分的最开的“胖边界”——也就是最好的决策边界

如上图,哪个边界才是最好的呢

同时我们把两类数据分成1 和-1 ,在边界上面的(红色点)视为1 ,下面的点(黄色点)视为-1

(逻辑回归是视为1和0,但是我们可以这样认为,我们的决策边界需要两者都要考虑,因此一个是1 另一个是-1)

那么我们把数据看成地雷,也就是要找出一条最安全的路

那么这条路当然是离雷越远越好

比起左边,我们更想要右边的边界对吧

那么从图上我们可以看到,影响这个边界的会是离我们最近的雷,也就是支持向量

支持向量机,也就是支持向量和决策边界

而在支持向量(离我们最近的雷)后面的雷(数量、分布)是不会对我们的决策边界有影响的

所以现在我们需要得到的是雷对我们边界的距离

假设现在的决策边界就是这个hyper plane ,有两个点符合在决策边界上的就符合1式

那么就可以用二式来表达法向量和平面垂直,

之后就可以有三式,用(x-x')表示求解点向量,和法向量的单位向量的内积就是将前者向量投影到法向量上的长度

而同时

如果等比放大缩小w b 看起来决策边界并没有变化,但是决策间隔却是改变了

例如,2w ,2b,决策边界没有改变但是间隔却是之前的两倍

就需要我们/ w的长度

那么这个也就是我们想要求的点到决策边界的距离

而对于有绝对值的直接求解是比较麻烦的,因此我们需要利用前面说到的将数据分为1和-1这个性质

可以看到 label和实际值(数值࿰

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值