我使用的是Anaconda3的平台来搭建环境的,语言是python3,工具为jupter Notebook。
这个是我第一次测试MNIST数据集的测试记录,当做笔记,用的到的小伙伴也可以参考一下哦!
首先到官网下载好需要的数据,一共是四个文件。保存到桌面先。如下图所示。
接着使用win+R 打开“运行”,输入“jupyter Notebook”打开编辑工具,等待工具打开,创建一个新的空文件(python3),接着创建文件夹MNIST_data,将之前放在桌面的四个文件复制到该文件夹内,像下面这样。
然后就可以编写代码了。如下所示
#下面的代码会提示报警,影响不大
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
数据导入之后,就是开始实现模型了
#导入tensorflow
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784]) #构建占位符,代表输入的图像,None表示样本的数量可以是任意的
W = tf.Variable(tf.zeros([784,10])) #构建一个变量,代表训练目标W,初始化为0
b = tf.Variable(tf.zeros([10])) #构建一个变量,代表训练目标b,初始化为0
y = tf.nn.softmax(tf.matmul(x,W) + b) #构建了一个softmax的模型:y = softmax(Wx + b),y指样本标签的预测值
y_ = tf.placeholder("float", [None,10]) #构建占位符,代表样本标签的真实值
#交叉熵代价函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#使用梯度下降法(0.01的学习率)来最小化这个交叉熵代价函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#添加操作,初始化变量
init = tf.global_variables_initializer() #tf.initialize_all_variables() 使用这个会出错,但是照样可以运行。
#创建回话Session
sess = tf.Session() #构建会话
sess.run(init) #初始化所有变量
#训练模型,循环1000次
for i in range(1000): #迭代次数为1000
batch_xs, batch_ys = mnist.train.next_batch(100) #使用minibatch的训练数据,一个batch的大小为100
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) #用训练数据替代占位符来执行训练
#模型评估
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真值
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #用平均值来统计测试准确率
print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) #打印测试信息
sess.close()
这个测试结果大约为0.91左右。感觉还不错,虽然遇到了一些小问题,还是慢慢的解决了,运行成功后还是蛮开心的。
最后,如有不足,还希望各位小伙伴指出,谢谢。