关于Tensorflow模型的保存、加载和预导入

参考ANKIT SACHAN:A quick complete tutorial to save and restore Tensorflow models

1. 什么是Tensorflow模型

Tensorflow模型主要包含我们训练过的网络设计或图形以及网络参数的值。因此,Tensorflow模型有两个主要文件:

1.1 元图:

这是一个协议缓冲区,可以保存完整的Tensorflow图; 即所有变量,操作,集合等。此文件具有.meta扩展名。
在这里插入图片描述

1.2 检查点文件:

这是一个二进制文件,其中包含权重,偏差,渐变和所有其他保存变量的所有值。此文件有扩展名。CKPT。但是,Tensorflow已将其从版本0.11更改为此。现在,我们有两个文件,而不是单个.ckpt文件
在这里插入图片描述

  • .data文件:是包含我们的训练变量的文件,我们将继续使用它。
  • checkpoint文件:它只保存最新检查点文件的记录。
    在这里插入图片描述
    总而言之,对于大于0.10的版本,Tensorflow模型如下所示:
    在这里插入图片描述

2. 保存Tensorflow模型

比如你正在训练一个用于图像分类的卷积神经网络。作为标准做法,您要密切关注损失和准确性数字,一旦看到网络已经融合,你就可以手动停止训练,或者针对固定数量的epoch进行训练,训练完成后,我们希望将所有变量和网络图保存到文件中以备将来使用。

  • 在Tensorflow中,我们希望保存将创建tf.train.Saver()类实例的所有参数的图形和值
saver = tf.train.Saver()
  • 注意:tensorflow变量仅在会话中存在,因此,必须通过在刚创建的saver对象上调用save方法将模型保存在会话中
saver.save(sess, 'my_test_model')   #sess:会话;my_test_model:我们为模型提供的名称
  • 完整例程:
import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape = [2]), name = 'w1')
w2 = tf.Variable(tf.random_normal(shape = [5]), name = 'w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my_test_model')

########################################################
# This will save following files in Tensorflow v >= 0.11
my_test_model.data-00000-of-00001
my_test_model.index
my_test_model.meta
checkpoint
#######################################################
  • 如果我们在1000次迭代后保存模型,我们将通过传递步数来调用save:
saver.save(sess, 'my_test_model', global_step = 1000)

#######################################################
#这只会将“-1000”附加到模型名称,并将创建以下文件:
l-1000.index
my_test_model-1000.meta
my_test_model-1000.data-00000-of-00001
checkpoint
#######################################################
  • 在训练时,我们在每1000次迭代后保存模型,所以.meta文件是第一次创建(第1000次迭代),我们不需要每次都重新创建.meta文件(所以,我们不要t保存.meta文件在2000,3000 …或任何其他迭代)。我们只保存模型以进行进一步的迭代,因为图形不会改变。因此,当我们不想编写元图时,我们使用这个:
saver.save(sess, 'my_test_model', global_step = step, write_meta_graph = False)
  • 如果您只想保留4个最新型号并希望在培训期间每2小时保存一个型号,则可以使用max_to_keep和keep_checkpoint_every_n_hours。
saver = tf.train.Saver(max_to_keep = 4, keep_checkpoint_every_n_hours = 2)
  • 注意,如果我们在tf.train.Saver()中没有指定任何内容,它会保存所有变量。如果,我们不想保存所有变量而只是保存其中一些变量。我们可以指定要保存的变量/集合。在创建tf.train.Saver实例时,我们传递一个列表或我们要保存的变量字典。我们来看一个例子:
import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape = [2], name = 'w1'))
w2 = tf.Variable(tf.random_normal(shape = [5], name = 'w2'))
saver = tf.train.Saver([w1, w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my_test_model', global_step = 1000)

3. 导入预先训练的模型

如果您想使用其他人的预训练模型进行微调,您需要做两件事:

  • 创建网络:
    您可以通过编写python代码来创建网络,以手动创建每个图层作为原始模型。但是,如果您考虑一下,我们已经将网络保存在.meta文件中,我们可以使用tf.train.import()函数重新创建网络,如下所示:
saver = tf.train.import_meta_graph('my_test_model-1000.meta')

###########################################################################
请记住,import_meta_graph将.meta文件中定义的网络附加到当前图形。
因此,这将为您创建图形/网络,但我们仍需要加载我们在此图表上训练过的参数值。
###########################################################################
  • 加载参数:
    我们可以通过调用此保护程序上的还原来恢复网络参数,该保护程序是tf.train.Saver()类的一个实例
with tf.Session() as sess:
	new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
	new_saver_restore(sess, tf.train.latest_checkpoint('./'))
	
#在此之后,像w1和w2这样的张量值已经恢复并可以访问:
with tf.Session() as sess:
	saver = tf.train.import_meta_graph('my-model-1000.meta')
	saver.restore(sess, tf.train.latest_checkpoint('./'))	
	print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value of w1.

4. 使用已恢复的模型

现在您已经了解了如何保存和恢复Tensorflow模型,让我们开发一个实用指南来恢复任何预先训练的模型,并将其用于预测,微调或进一步培训。每当您使用Tensorflow时,您都会定义一个图表,其中包含示例(训练数据)和一些超参数,如学习率,全局步骤等。这是使用占位符提供所有训练数据和超参数的标准做法。让我们使用占位符构建一个小型网络并保存它。请注意,保存网络时,不会保存占位符的值。

import tensorflow as tf
 
#Prepare to feed input, i.e. feed_dict and placeholders
w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias")
feed_dict ={w1:4,w2:8}
 
#Define a test operation that we will restore
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
 
#Create a saver object which will save all the variables
saver = tf.train.Saver()
 
#Run the operation by feeding input
print sess.run(w4,feed_dict)
#Prints 24 which is sum of (w1+w2)*b1 
 
#Now, save the graph
saver.save(sess, 'my_test_model',global_step=1000)
  • 现在,当我们想要恢复它时,我们不仅要恢复图形和权重,还要准备一个新的feed_dict,将新的训练数据提供给网络。我们可以通过graph.get_tensor_by_name()方法引用这些保存的操作和占位符变量
#How to access saved variable/Tensor/placeholders 
w1 = graph.get_tensor_by_name("w1:0")
 
## How to access saved operation
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
  • 如果我们只想使用不同的数据运行相同的网络,您只需通过feed_dict将新数据传递到网络即可
import tensorflow as tf
 
sess=tf.Session()    
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
 
 
# Now, let's access and create placeholders variables and
# create feed-dict to feed new data
 
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}
 
#Now, access the op that you want to run. 
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
 
print sess.run(op_to_restore,feed_dict)
#This will print 60 which is calculated 
#using new values of w1 and w2 and saved value of b1. 
  • 如果您想通过添加更多图层然后训练它来向图表添加更多操作, 看这里:
import tensorflow as tf

sess=tf.Session()    
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))


# Now, let's access and create placeholders variables and
# create feed-dict to feed new data

graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}

#Now, access the op that you want to run. 
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

#Add more to the current graph
add_on_op = tf.multiply(op_to_restore,2)

print sess.run(add_on_op,feed_dict)
#This will print 120.
  • 但是,您是否可以恢复旧图形的一部分并对其进行附加以进行微调?当然,您可以通过graph.get_tensor_by_name()方法访问相应的操作,并在其上构建图形。这是一个真实世界的例子。在这里,我们使用元图加载一个vgg预训练网络,并在最后一层将输出数量更改为2,以便使用新数据进行微调。
......
......
saver = tf.train.import_meta_graph('vgg.meta')
# Access the graph
graph = tf.get_default_graph()
## Prepare the feed_dict for feeding data for fine-tuning 

#Access the appropriate output for fine-tuning
fc7= graph.get_tensor_by_name('fc7:0')

#use this if you only want to change gradients of the last layer
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()

new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

# Now, you run this with fine-tuning data in sess.run()
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
探索全栈前端技术的魅力:HTML+CSS+JS+JQ+Bootstrap网站源码深度解析 在这个数字化时代,构建一个既美观又功能强大的网站成为了许多开发者和企业追逐的目标。本份资源精心汇集了一套完整网站源码,融合了HTML的骨架搭建、CSS的视觉美化、JavaScript的交互逻辑、jQuery的高效操作以及Bootstrap的响应式设计,全方位揭秘了现代网页开发的精髓。 HTML,作为网页的基础,它构建了信息的框架;CSS则赋予网页生动的外观,让设计创意跃然屏上;JavaScript的入,使网站拥有了灵动的交互体验;jQuery,作为JavaScript的强力辅助,简化了DOM操作与事件处理,让编码更为高效;而Bootstrap的融入,则确保了网站在不同设备上的完美呈现,响应式设计让访问无界限。 通过这份源码,你将: 学习如何高效组织HTML结构,提升页面速度与SEO友好度; 掌握CSS高级技巧,如Flexbox与Grid布局,打造适应各种屏幕的视觉盛宴; 理解JavaScript核心概念,动手实现动画、表单验证等动态效果; 利用jQuery插件快速增强用户体验,实现滑动效果、Ajax请求等; 深入Bootstrap框架,掌握移动优先的开发策略,响应式设计信手拈来。 无论是前端开发新手渴望系统学习,还是资深开发者寻求灵感与实用技巧,这份资源都是不可多得的宝藏。立即深入了解,开启你的全栈前端探索之旅,让每一个网页都成为技术与艺术的完美融合!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值