python 程序学习

写在前面 纯粹是学习的记录 方便复习

1 遇到的函数

(1)linspace

numpy.linspace(start,stop,num=(50 default),endpoint=(),retstep=(),dtype=())

import 
numpy.linspace(0,10,1000,endpoint=False,retstep=True)

endpoint=True 就说明有stop
endpoint=False 去掉末尾
retstep=True 输出 间距 样本点怎么取出来的
dtype 输出数组的类型。 如果未给出dtype,则从其他输入参数推断数据类型

(2)figure

figure函数 见欧阳小俊
链接 figure 以及画多图

(3)xrange

与range一样
xrange(8)>>[0,1,2,3,4,5,6,7]
通过list函数来输出
xrange(0,8,2)
# 步长为 2
list(xrange(0,8,2))>>[0,2,4,6]

arange
from numpy
arange(stop) #arange(3)—[0 1 2]
arange(start,stop,step) step 可以为小数,range不行

(4)RandomState()

RandomState(None) 生成随机数
a=numpy.random.RandomState(None)
b=a.rand(1,2)#且每一次都生成不一样的矩阵,一行两列
RandomState(1) 生成随机数
a=numpy.random.RandomState(1)
b=a.rand(1,2)#生成的数不变
numpy.random.RandomState.uniform(a,b,(c,d))

(5)Random

random.uniform(a,b) 用于生成一个随机浮点数,在a,b之间
np.random.rand()
zeros(5) 15 【0 0 0 0 0】
zeros((2,5)) 2
5 [0 0 0 0 0;0 0 0 0 0]
random.normal(mu,sigma,size)
mu是均值就不用说了吧 中心线 mu=0就说明在y轴
sigma 标准差 标准差越小 越集聚 曲线就偏向中心 反之就偏离 带宽?

(6)hist

matplotlib.pyplot.hist() 直方图是为了表明数据分布情况 通俗的说是哪一块出现的概率比较大 一般情况下 横轴是数据 纵轴是频数
plt.hist(data[0])
plt.hist(data[0],bins=num] bins是分区,如果等于20,就是意味着分成20个直方图,默认的是10个
plt.hist(data[0],bins=num,fc=‘b’) fc是指直方图的颜色

(7)seaborn

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')#设置格式
sns.distplot(data);
#sns.distplot(births['prglngth'], kde=False)#可以去掉kde曲线

sns.kdeplot(x,bw=0.1,label='bw: 0.1')#更光滑的核密度曲线,bw是带宽

(8)rd

import numpy as np
from openpyxl import load_workbook
#读取路径
book = load_workbook(filename=r"C:\Users\Administrator\Desktop\data.xlsx")#桌面的表格
#读取名字为Sheet1的表
sheet = book.get_sheet_by_name("Sheet1")
#用于存储数据的数组
data= []
col_num =200
while col_num <= 1999 :
    #将表中第一列的1-100行数据写入data数组中
    data.append(sheet.cell(row=50, column=col_num).value)
    col_num = col_num + 1
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页