贝叶斯学习记录(一)

1贝叶斯集锦

贝叶斯集锦3
里面右边一列 还有4 和 5 定个小目标 先看完这个系列

2 联合概率分布

好绕啊 看了几篇论文和书 感觉这个概念一定要搞清楚
就是参数识别会走向多维
孤狼北望概念描述
数理统计 有说 随机变量及其分布
一维随机变量及其分布
一个随机变量的所有取值是有限个或无穷个,是离散型随机变量
正则 非负
二维随机变量

边缘分布就是一条边的概率累加,对于二维来说联合分布就是一个点的概率

3 先验分布

贝叶斯统计两大核心 贝叶斯假设和贝叶斯公式
当我们对某估计量在没有经验和历史数据可利用的情况下,如何确定?
无信息的先验分布。参数 θ 的无信息先验分布是指除了已经获知参数 θ 的取值区间 Θ 和其在总体中的地位外,不再包含 θ 的其他任何信息。
从参数 θ 类型上来看,无信息先验分布又可分为两种:位置参数的无信息先验和尺度参数的无信息先验。位置参数,譬如正态分布N(μ,σ2),μj就是位置参数的无信息先验,而σ2 是尺度参数的无信息先验
位置参数依据贝叶斯假定,一般比较通常的假定为:

π(θ)={ 1,θ∈Θ or 0,θ∉Θ**}**

尺度参数:
π(θ)=σ-1 ,σ>0
通过贝叶斯定理实现了π(θ)→p(θ|x),基于x样本的转化,由π(θ)的原来的概率→基于x样本修正的概率密度函数。
知道X总体的分布
在这里插入图片描述
在这里插入图片描述
1
最后推得 θ的后验概率密度主要有两个部分,第一部分
第二部分
第一部分是引入先验信息带来的误差,可以看出θ总体分布服从N(μ,σ2 )
第二部分是引入样本的误差,是从X总体抽的n个样本

3.1 最大信息熵的先验分布

最大熵原理认为所有可行的解中应该优先选择信息熵最大的一个在这里插入图片描述
1)均值和标准差已知的最大熵先验
假设已知随机变量 θ 的均值为 μ,标准差为 σ,来获取其最大熵先验分布。定义拉格朗日
感觉这个公式后面推错了额,拉格朗日乘子不用积分吧。。。
定义被积函数
令∂F/∂p=0
在这里插入图片描述

在这里插入图片描述
这是一个高斯分布,因此在均值和方差已知的情况下,最大熵的先验分布可以设为高斯分布。
下面是区间已知的情况[a,b]在这里插入图片描述
2)均值和方差未知的最大熵先验(仅区间存在)
在这里插入图片描述

3.2 模态参数识别

假设Y*=Y(θ)+ε,ε∈N(0,cov)
Y*为实测向量,而Y(θ)为有限元计算输出向量
在这里插入图片描述
其数值大小反应了模态测试信息的不确定性
在这里插入图片描述
在这里插入图片描述

参考文献

[1]基于贝叶斯方法的有限元模型修正研究.张建新.

已标记关键词 清除标记
相关推荐
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页