高数——零点定理、介值定理的应用

本文深入解析了零点定理与介值定理,阐述了若函数在闭区间连续,且两端点函数值异号,则区间内必有零点;介值定理则说明了连续函数在闭区间上的值域包含该区间端点函数值间的任意值。两定理揭示了连续函数的基本性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零点定理

设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。(至少存在一个点,其值是0)

介值定理

又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f(x),那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。(介于最大值和最小值之间的值)

在这里插入图片描述
本文转载自:https://www.jianshu.com/p/21b80d6304a9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值