结论证明
lim
x
→
a
+
(
x
−
a
)
p
f
(
x
)
=
A
可
写
成
lim
x
→
a
+
f
(
x
)
(
x
−
a
)
p
=
A
\lim_{x\to a^+} (x-a)^pf(x)=A可写成 \lim_{x\to a^+}\frac{f(x)}{(x-a)^p}=A
x→a+lim(x−a)pf(x)=A可写成x→a+lim(x−a)pf(x)=A
然后看下图 因为红线在黑线的上方,所以红线与xOy轴围成的面积更大。 如果黑线代表的函数是发散的,那红线必然发散; 如果红线代表的函数是收敛的,那黑线必然收敛
对于
∫
a
b
(
x
−
a
)
−
p
d
x
=
1
1
−
p
(
x
−
a
)
1
−
p
∣
a
b
\int_{a}^{b}(x-a)^{-p} dx=\frac{1}{1-p}(x-a)^{1-p} |_a^b
∫ab(x−a)−pdx=1−p1(x−a)1−p∣ab
①当
0
<
p
<
1
0<p<1
0<p<1时,
∫
a
b
(
x
−
a
)
−
p
d
x
\int_{a}^{b}(x-a)^{-p} dx
∫ab(x−a)−pdx收敛,而上述公式里的A当
0
<
p
<
1
0<p<1
0<p<1时,
0
≤
A
<
+
∞
0 \leq A<+\infty
0≤A<+∞,也就是说A是个有限数。 所以
∫
a
b
f
(
x
)
d
x
\int_a^bf(x)dx
∫abf(x)dx也收敛
②当 p ≥ 1 p\geq1 p≥1时, ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ∫ab(x−a)−pdx发散,而A>0,说明 ∫ a b f ( x ) d x \int_a^bf(x)dx ∫abf(x)dx和 ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ∫ab(x−a)−pdx同数量级大小,或者 ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ∫ab(x−a)−pdx是比 ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ∫ab(x−a)−pdx更大的数量级