无界函数的极限审敛法

在这里插入图片描述

结论证明

lim ⁡ x → a + ( x − a ) p f ( x ) = A 可 写 成 lim ⁡ x → a + f ( x ) ( x − a ) p = A \lim_{x\to a^+} (x-a)^pf(x)=A可写成 \lim_{x\to a^+}\frac{f(x)}{(x-a)^p}=A xa+lim(xa)pf(x)=Axa+lim(xa)pf(x)=A
然后看下图 因为红线在黑线的上方,所以红线与xOy轴围成的面积更大。 如果黑线代表的函数是发散的,那红线必然发散; 如果红线代表的函数是收敛的,那黑线必然收敛
在这里插入图片描述
对于 ∫ a b ( x − a ) − p d x = 1 1 − p ( x − a ) 1 − p ∣ a b \int_{a}^{b}(x-a)^{-p} dx=\frac{1}{1-p}(x-a)^{1-p} |_a^b ab(xa)pdx=1p1(xa)1pab
①当 0 < p < 1 0<p<1 0<p<1时, ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ab(xa)pdx收敛,而上述公式里的A当 0 < p < 1 0<p<1 0<p<1时, 0 ≤ A < + ∞ 0 \leq A<+\infty 0A<+,也就是说A是个有限数。 所以 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx也收敛

②当 p ≥ 1 p\geq1 p1时, ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ab(xa)pdx发散,而A>0,说明 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ab(xa)pdx同数量级大小,或者 ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ab(xa)pdx是比 ∫ a b ( x − a ) − p d x \int_{a}^{b}(x-a)^{-p} dx ab(xa)pdx更大的数量级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java全栈研发大联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值