高效的神经架构搜索:Efficient Neural Architecture Search via Parameter Sharing(笔记)—2018

通过参数共享实现高效的神经架构搜索

Efficient Neural Architecture Search via Parameter Sharing—2018

摘要

  1. 在ENAS中,控制器controller通过在大型计算图中搜索最佳子图来发现神经网络架构。
  2. 使用策略梯度policy gradient训练控制器,在验证集上,选择最大化预期奖励 的子图。
  3. 训练所选子图的模型,最小化规范的交叉熵损失。
  4. 在子模型间共享权重,使ENAS效果显著提升(比标准的神经网络体系结构搜索standard Neural Architecture Search便宜1000倍)

引言

  1. 循环训练RNN控制器,首先采样备选结构,如,子模型;随后训练至收敛,计算其性能;计算结果作为指导信号,多次迭代优化性能。
  2. 缺点:成本大,时间长。(用450个GPU来训练,找到一个优秀的架构也需要训练3到4天。也就是说,对于除了Google之外的普通贫民用户们,这种方法还是门槛太高、效率太低。)
  3. NAS计算瓶颈:训练每一个子模型至其收敛,只计算其准确性同时丢弃全部训练权重
  4. 主要贡献:强制子模型权重共享,避免每次从头训练模型。
  5. 方法思想基于迁移学习和多任务学习:特定任务模型参数可用于其他任务模型,几乎不需改进参数。

方法

  1. ENAS的核心思想是观察到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值