用CNN综合学习分析RGB-D图像中的6D姿态估计:Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images—2015

该文提出了一种基于卷积神经网络(CNN)的6D姿态估计方法,通过比较观察图像和渲染图像来建模物体姿态的后验分布。与传统方法不同,CNN不仅能处理不同形状和外观的物体,而且在有遮挡的RGB-D图像中表现出了显著的性能提升。这种方法通过最大似然训练得到参数,优化过程中使用CNN输出能量值,以找到最佳姿态估计。
摘要由CSDN通过智能技术生成

Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images—2015

综合学习分析RGB-D图像中的6D姿态估计(用CNN)

文章利用卷积神经网络(CNN)作为概率模型,替换【5】中原有的能量方程形式,比较观察图像和渲染图像间的差异,直接输出能量值。而非《Inferring 3d object pose in RGB-D images》中直接输出目标姿态。Our framework is probabilistic. The posterior distribution of the pose is modelled as a Gibbs distribution with a CNN as energy function.

摘要

  1. 综合分析法:是将观察结果与前向过程的输出进行比较,例如特定姿势中感兴趣对象的渲染图像。但由于遮挡或复杂的传感器噪声使其难以进行比较。
  2. 基于此,文章提出了一种“学会比较”的方法,通过**卷积神经网络(CNN)比较观察图像和渲染图像来描述特定物体姿态的后验密度。CNN采用最大似然范式进行训练。
  3. 我们根据经验观察到CNN并不专门针对特定物体的几何形状或外观。它可以用于具有截然不同的形状和外观以及不同背景的物体。
  4. 与最先进的技术相比,我们展示了两个不同数据集的显着改进,包括总共11个对象,杂乱的背景和重度遮挡。

主要贡献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值