第二章 年金
引言
-
谷歌员工因意外去世后,其配偶可以在10年之后内继续领取去世员工生前50%的薪水。
-
常用住房按揭贷款还款方式主要有等额本息还款、等额本金还款。
年金(Annuity)就是指间隔一定时间支付一次的系列付款。
-
确定年金(Annuities-certain):指每个间隔点上都按既定数额支付款项的年金。住房按揭贷款、购物分期付款等. 确定年金一般分为基本年金和一般年金。基本年金:1.时间间隔相等;2.付款频率和计息频率一致;3.每次付款金额相等;4.每期利率相等。不满足上述4个条件的年金就是一般年金。
-
不确定年金(Contingent Annuity):指每个间隔点上按照一定条件决定是否付款的年金。生存年金(Life Annuity)
-
按付款时刻,确定年金分为期初年金和期末年金。
-
按付款期限,确定年金分为有限年金和永续年金
本章概览:
- 期末年金、期初年金
- 任意时刻的年金值
- 永续年金
- 连续年金
一、期末付、期初付年金
概念
设每年间隔一期付款 1 1 1次,以利率 i i i计息 1 1 1次,每期期末(初)付款 1 1 1单位,共付款 n n n期,成为 n n n期期末(初)付年金。
所有 n n n次 1 1 1单位付款在时刻 0 0 0的现值之和称为年金的现值,在时刻 n n n的积累值之和称为年金的积累值或终值。
折算到现在,折算到第 n n n期,即一个在现在来看,一个从未来来看。
期末付年金的现值和终值
-
现值 a   n   ‾ ​ ∣ = v + v 2 + ⋯ + v n = v ( 1 − v n ) 1 − v = v ( 1 − v n ) d = v ( 1 − v n ) i v = 1 − v n i , v = 1 1 + i {a_{\left. {\overline {\, n \,}}\! \right| }} = v+v^2+\cdots+v^n=\frac{v(1-v^n)}{1-v}=\frac{v(1-v^n)}{d}=\frac{v(1-v^n)}{iv}=\frac{1-v^n}{i},v=\frac{1}{1+i} an∣=v+v2+⋯+vn=1−vv(1−vn)=dv(1−vn)=ivv(1−vn)=i1−vn,v=1+i1
a   n   ‾ ​ ∣ = 1 − v n i {a_{\left. {\overline {\, n \,}}\! \right| }} =\frac{1-v^n}{i} an∣=i1−vn -
终值 S   n   ‾ ​ ∣ = 1 + ( 1 + i ) + ⋯ + ( 1 + i ) n − 1 = 1 − ( 1 + i ) n 1 − ( 1 + i ) = ( 1 + i ) n − 1 i S_{\left. {\overline {\, n \,}}\! \right| } =1+(1+i)+\cdots+(1+i)^{n-1}=\frac{1-(1+i)^n}{1-(1+i)}=\frac{(1+i)^n-1}{i} Sn∣=1+(1+i)+⋯+(1+i)n−1=1−(1+i)1−(1+i)n=i(1+i)n−1
S   n   ‾ ​ ∣ = ( 1 + i ) n − 1 i S_{\left. {\overline {\,n\,}}\! \right| }=\frac{(1+i)^n-1}{i} Sn∣=i(1+i)n−1 -
关系:
a   n   ‾ ​ ∣ × ( 1 + i ) n = S   n   ‾ ​ ∣ {a_{\left. {\overline {\, n \,}}\! \right| }} \times (1+i)^n=S_{\left. {\overline {\,n\,}}\! \right| } an∣×(1+i)n=Sn∣
期初付年金的现值和终值
a ¨   n   ‾ ​ ∣ = 1 + v + ⋯ + v n − 1 = 1 − v n 1 − v = 1 − v n d {\ddot a_{\left. {\overline {\, n \,}}\! \right| }}=1+v+\cdots+v^{n-1}=\frac{1-v^n}{1-v}=\frac{1-v^n}{d} a¨n∣=1+v+⋯+vn−1=1−v1−vn=