保险精算笔记Chapter02

本文详细介绍了年金的概念,包括期末付年金、期初付年金、永续年金和连续年金。通过实例解析了年金的现值和终值计算,并探讨了不同类型的年金之间的转换关系。此外,还讨论了在特定时刻的年金值计算方法,如首期付款前的年金。最后,通过实际案例展示了如何运用年金计算解决实际问题。
摘要由CSDN通过智能技术生成

第二章 年金

引言

  • 谷歌员工因意外去世后,其配偶可以在10年之后内继续领取去世员工生前50%的薪水。

  • 常用住房按揭贷款还款方式主要有等额本息还款、等额本金还款。

年金(Annuity)就是指间隔一定时间支付一次的系列付款。

  • 确定年金(Annuities-certain):指每个间隔点上都按既定数额支付款项的年金。住房按揭贷款、购物分期付款等. 确定年金一般分为基本年金和一般年金。基本年金:1.时间间隔相等;2.付款频率和计息频率一致;3.每次付款金额相等;4.每期利率相等。不满足上述4个条件的年金就是一般年金。

  • 不确定年金(Contingent Annuity):指每个间隔点上按照一定条件决定是否付款的年金。生存年金(Life Annuity)

  • 按付款时刻,确定年金分为期初年金期末年金

  • 按付款期限,确定年金分为有限年金永续年金

本章概览:

  • 期末年金、期初年金
  • 任意时刻的年金值
  • 永续年金
  • 连续年金

一、期末付、期初付年金

概念

设每年间隔一期付款 1 1 1次,以利率 i i i计息 1 1 1次,每期期末(初)付款 1 1 1单位,共付款 n n n期,成为 n n n期期末(初)付年金。

所有 n n n 1 1 1单位付款在时刻 0 0 0的现值之和称为年金的现值,在时刻 n n n的积累值之和称为年金的积累值或终值。

折算到现在,折算到第 n n n期,即一个在现在来看,一个从未来来看。

期末付年金的现值和终值

  • 现值 a   n   ‾ ​ ∣ = v + v 2 + ⋯ + v n = v ( 1 − v n ) 1 − v = v ( 1 − v n ) d = v ( 1 − v n ) i v = 1 − v n i , v = 1 1 + i {a_{\left. {\overline {\, n \,}}\! \right| }} = v+v^2+\cdots+v^n=\frac{v(1-v^n)}{1-v}=\frac{v(1-v^n)}{d}=\frac{v(1-v^n)}{iv}=\frac{1-v^n}{i},v=\frac{1}{1+i} an=v+v2++vn=1vv(1vn)=dv(1vn)=ivv(1vn)=i1vn,v=1+i1
    a   n   ‾ ​ ∣ = 1 − v n i {a_{\left. {\overline {\, n \,}}\! \right| }} =\frac{1-v^n}{i} an=i1vn

  • 终值 S   n   ‾ ​ ∣ = 1 + ( 1 + i ) + ⋯ + ( 1 + i ) n − 1 = 1 − ( 1 + i ) n 1 − ( 1 + i ) = ( 1 + i ) n − 1 i S_{\left. {\overline {\, n \,}}\! \right| } =1+(1+i)+\cdots+(1+i)^{n-1}=\frac{1-(1+i)^n}{1-(1+i)}=\frac{(1+i)^n-1}{i} Sn=1+(1+i)++(1+i)n1=1(1+i)1(1+i)n=i(1+i)n1
    S   n   ‾ ​ ∣ = ( 1 + i ) n − 1 i S_{\left. {\overline {\,n\,}}\! \right| }=\frac{(1+i)^n-1}{i} Sn=i(1+i)n1

  • 关系:
    a   n   ‾ ​ ∣ × ( 1 + i ) n = S   n   ‾ ​ ∣ {a_{\left. {\overline {\, n \,}}\! \right| }} \times (1+i)^n=S_{\left. {\overline {\,n\,}}\! \right| } an×(1+i)n=Sn

期初付年金的现值和终值

a ¨   n   ‾ ​ ∣ = 1 + v + ⋯ + v n − 1 = 1 − v n 1 − v = 1 − v n d {\ddot a_{\left. {\overline {\, n \,}}\! \right| }}=1+v+\cdots+v^{n-1}=\frac{1-v^n}{1-v}=\frac{1-v^n}{d} a¨n=1+v++vn1=1v1vn=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值