HDU4135 Co-(容斥定理)

题目:

Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 10 15) and (1 <=N <= 10 9).

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

题意:输入三个整数a,b,n,求区间[a,b]内与n是相对素数(若两个整数的最大公因数是1,则称它们为相对素数)的整数个数。

大概思路:求[a,b]区间内的相对素数,可以用[1,b]区间内的相对素数数减去区间[1,a)内的相对素数数。求区间[1,m]的区间的相对素数,可以从反面想,可以求出在区间内与n不是相对素数的整数数。先求出n的所有质因数,是n质因数整数倍的数一定不是n的相对素数,但是这里会有交集,利用容斥定理求出与n不是相对素数的个数。

代码:

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std;
long long a[1000],num;
///求n的质因数
void f(long long n)
{
    long long i;
    num=0;
    for(i=2;i*i<=n;i++){///循环只需要到根号n
        if(n%i==0){
            a[num++]=i;
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1)a[num++]=n;
}
///容斥定理(奇加偶减)
long long rongchi(long long m)
{
    long long q[10000],i,j,k;
    long long sum=0;
    int t=0;
    q[t++]=-1;
    for(i=0;i<num;i++){
        k=t;
        for(j=0;j<k;j++){
            q[t++]=q[j]*a[i]*(-1);
        }
    }
    for(i=1;i<t;i++)
        sum+=m/q[i];
    return sum;
}
int main()
{
    int t;
    int cas=0;
    long long a,b,n;
    scanf("%d",&t);
    while(t--){
        long long ans=0;
        scanf("%lld%lld%lld",&a,&b,&n);
        f(n);
        ans=b-rongchi(b)-(a-1-rongchi(a-1));
        printf("Case #%d: ",++cas);
        printf("%lld\n",ans);
    }
    return 0;
}


weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值