利用python绘制统计控制过程(SPC)中的X-bar图

1 X-bar图的解释

X-bar 控制图是统计过程控制(SPC)中一种常用的控制图,它用于监控一个过程的均值(即样本平均值)是否稳定、是否处于控制状态。X-bar 控制图特别适用于当过程的输出是连续数据时,且数据可以分组为多个样本时。

比如,我的原始数据是100个零件的尺寸,我可以计算1、2、3样本的均值,再计算2、3、4样本的均值,再计算3、4、5样本的均值,…,再计算98、99、100样本的均值。并绘制X-bar图,观测样本平均值是否稳定。

2 X-bar 控制图的基本要素

样本均值(X-bar):每次抽取一组样本,计算样本的均值,X-bar 就是这些样本均值的图示。
控制限:X-bar 图上会有三条控制限:

  1. 上控制限(UCL):表示过程的最大容忍限度。
  2. 下控制限(LCL):表示过程的最小容忍限度。
  3. 中心线(CL):通常是过程的目标均值或长期均值。

3 实践操作

3.1 生成100个随机数(假设为零件的尺寸)

import numpy as np
import matplotlib.pyplot as plt

# 定义样本大小和总体数据
sample_size = 5  # 每个子样本的长度(例如5天)
num_samples = 100  # 总的数据数量

# 标准正态分布的数据生成
data = 10 + np.random.normal(0, 2,num_samples)

# 计算每个子样本的均值
x_bar = [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值