第三课:马氏链

本文深入探讨了马氏链的概念,包括其定义、独立增量过程与马氏性的关系,以及时齐马氏链的一步和多步转移概率。通过C-K方程解析了多步转移概率矩阵,并介绍了简单随机游动作为马氏链的一个实例。文章还提到了马氏链的等价叙述和在概率论、线性代数和机器学习中的重要性。
摘要由CSDN通过智能技术生成

第三课:马氏链

1.定义

X = { X n : n ∈ N } X=\{X_n: n \in \N\} X={ Xn:nN} 是状态空间为 S ∈ Z S \in \Z SZ 的随机过程, 若对 ∀ n ∈ N \forall n \in \N nN ∀ i 0 , i 1 , . . . , i n − 1 , i , j ∈ S \forall i_0,i_1,...,i_{n-1},i,j \in S i0,i1,...,in1,i,jS P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , . . . , X 0 = i 0 ) = P ( X n + 1 = j ∣ X n = i ) P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},...,X_0=i_0)=P(X_{n+1}=j|X_n=i) P(Xn+1=jXn=i,Xn1=in1,...,X0=i0)=P(Xn+1=jXn=i) , 则称 X X X 为马氏链.


2. 注记

  1. X n + 1 X_{n+1} Xn+1视作未来 X n X_n Xn视作现在 X 0 , . . . , X n − 1 X_0,...,X_{n-1} X0,...,Xn1视作过去 , 马氏链说的是 具有 马氏性(未来仅与现在有关,与过去无关) 的随机过程.

  2. 进一步, 如果等式 P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , . . . , X 0 = i 0 ) = P ( X n + 1 = j ∣ X n = i ) P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},...,X_0=i_0)=P(X_{n+1}=j|X_n=i) P(Xn+1=jXn=i,Xn1=in1,...,X0=i0)=P(Xn+1=jXn=i) ,只与状态 i , j i,j i,j 有关,与起点 n n n 无关时,就称 X X X时齐马氏链.

  3. 独立增量过程 ⇒ \Rightarrow 马氏过程 ;马氏过程 ⇏ \nRightarrow 独立增量过程
    证明思路: 【先证明独立增量过程 ⇒ \Rightarrow 马氏过程】
    要证明马氏性, 就要从 P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , . . . , X 0 = i 0 ) P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},...,X_0=i_0) P(Xn+1=jXn=i,Xn1=in1,...,X0=i0)入手,要证明该条件概率等于 P ( X n + 1 = j ∣ X n = i ) P(X_{n+1}=j|X_n=i) P(Xn+1=jXn=i)
    一方面, P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , . . . , X 0 = i 0 ) = P ( X n + 1 − X n = j − i ∣ X n − X n − 1 = i − i n − 1 , . . . , X 1 − X 0 = i 1 − i 0 , X 0 = i 0 ) P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},...,X_0=i_0)=P(X_{n+1}-X_n=j-i|X_n-X_{n-1}=i-i_{n-1},...,X_1-X_0=i_1-i_0,X_0=i_0) P(Xn+1=jXn=i,Xn1=in1,...,X0=i0)=P(Xn+1Xn=jiXnXn1=iin1,...,X1X0=i1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值