经验似然课程笔记五: 经验似然的有限样本性质

本文探讨了经验似然方法在处理有限样本时的结点问题,证明了考虑或不考虑结点对经验似然比的影响是等价的。同时,文章阐述了经验似然比置信域为凸集的原理,通过展示如何构造满足条件的分布来证明这一点。内容包括经验似然比的定义、凸性证明及其在统计推断中的应用。
摘要由CSDN通过智能技术生成

这篇文章主要对给定 n n n个样本后,做经验似然推断时的一些细节做出补充和说明.

1.结点问题

所谓的结点就是指给定的 n n n个观察值中有些样本点取值相同,比如 1 , 1 , 2 , 3 1,1,2,3 1,1,2,3这种观测到了2个取值1的点,也就是存在结点.

在前几篇文章中,定义经验似然时我们并没有考虑样本中出现结点对推断结果是否有影响.
其实,利用经验进行推断时,是不需要考虑数据中是否存在结点的:

假设样本可以重新根据取值重新标记:
{ Y i j , i = 1 , . . , k ; j = 1 , . . , n i } \{Y_{ij},i=1,..,k;j=1,..,n_i\} { Yij,i=1,..,k;j=1,..,ni}
其中所有的 Y i j , j = 1 , . . , n i Y_{ij},j=1,..,n_i Yij,j=1,..,ni取值相同为 Y i Y_i Yi,并且当 i ≠ j i\ne j i=j时, Y i ≠ Y j Y_i\ne Y_j Yi=Yj, 且 ∑ i = 1 n n i = n . \sum\limits_{i=1}^nn_i=n. i=1nni=n.

若考虑结点:
L 1 ( μ ) = sup ⁡ { ∏ i = 1 k p i n i : p i ≥ 0 , ∑ i = 1 k p i = 1 , ∑ i = 1 k p i ( Y i − μ ) = 0 } L_1(\mu)=\sup\{\prod\limits_{i=1}^kp_i^{n_i}:p_i\ge0,\sum\limits_{i=1}^kp_i=1,\sum\limits_{i=1}^kp_i(Y_i-\mu)=0\} L1(μ)=sup{ i=1kpini:pi0,i=1kpi=1,i=1kpi(Yiμ)=0}

同样的,将 ∏ i = 1 k p i n i \prod\limits_{i=1}^kp_i^{n_i} i=1kpini仍旧看成是 n n n个元素的乘积, 根据几何均值 ≤ \le 算数均值,可知 sup ⁡ μ L 1 ( μ ) = ∏ i = 1 k ( n i / n ) n i \sup\limits_{\mu}L_1(\mu)=\prod\limits_{i=1}^k(n_i/n)^{n_i} μsupL1(μ)=i=1k(ni/n)ni.

所以经验似然比 R 1 ( μ ) = L 1 ( μ ) sup ⁡ μ L 1 ( μ ) = L 1 ( μ ) ∏ i = 1 k ( n i / n ) − n i = sup ⁡ { n n ∏ i = 1 k ( p i / n i ) n i : p i ≥ 0 , ∑ i = 1 k p i = 1 , ∑ i = 1 k p i ( Y i − μ ) = 0 } . R_1(\mu)=\frac{L_1(\mu)}{\sup\limits_{\mu}L_1(\mu)}=L_1(\mu)\prod\limits_{i=1}^k(n_i/n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值