E. Game of Stones SG函数

Sam has been teaching Jon the Game of Stones to sharpen his mind and help him devise a strategy to fight the white walkers. The rules of this game are quite simple:

The game starts with n piles of stones indexed from 1 to n. The i-th pile contains si stones.
The players make their moves alternatively. A move is considered as removal of some number of stones from a pile. Removal of 0 stones does not count as a move.
The player who is unable to make a move loses.

Now Jon believes that he is ready for battle, but Sam does not think so. To prove his argument, Sam suggested that they play a modified version of the game.

In this modified version, no move can be made more than once on a pile. For example, if 4 stones are removed from a pile, 4 stones cannot be removed from that pile again.

Sam sets up the game and makes the first move. Jon believes that Sam is just trying to prevent him from going to battle. Jon wants to know if he can win if both play optimally.
Input

First line consists of a single integer n (1 ≤ n ≤ 106) — the number of piles.

Each of next n lines contains an integer si (1 ≤ si ≤ 60) — the number of stones in i-th pile.
Output

Print a single line containing “YES” (without quotes) if Jon wins, otherwise print “NO” (without quotes)
Examples
Input
Copy

1
5

Output
Copy

NO

Input
Copy

2
1
2

Output
Copy

YES


考虑sg 函数:
1,1,2,2,2,3,3,3,3…;
手算一下即可;
那么我们异或就好;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 500005
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const int mod = 10000007;
#define Mod 20100403
#define sq(x) (x)*(x)
#define eps 1e-10
typedef pair<int, int> pii;


inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

int sg[maxn];
int n;
int s[maxn];

void init() {
	int cnt = 0;
	for (int i = 0; i <= 100; i++) {
		for (int j = 0; j <= i; j++) {
			sg[cnt] = i; cnt++;
		}
	}
}

int main()
{
	//ios::sync_with_stdio(false);
	rdint(n);
	init();
	int ans = 0;
	
	for (int i = 0; i < n; i++) {
		int x; rdint(x);
		ans ^= sg[x];
	}
	if (ans)cout << "NO" << endl;
	else cout << "YES" << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值