洛谷 [P1282] 多米诺骨牌

这道题是背包问题的变形,通过转换目标,从求最小翻转次数到判断差值是否可达。利用动态规划dp[i][j]表示用前i个物品达到差值j的最小步数。首先计算两数组和的差值Delta,然后进行背包DP,每个物品质量为a[i]-b[i]。最后找到最小的可达Delta并初始化dp数组,通过转移方程完成状态更新。
摘要由CSDN通过智能技术生成

这道题是一道背包问题,考虑一个背包,

显然如果我们直接设dp[i]表示前i个使差值最小所需的最少翻转次数,是具有后效性的。

所以我们将直接求最值,改为求某个值是否可行,这种求最值转变为求可行性的思想是非常实用的。
状态 dp[i][j]表示使用前i个物品修改得到差值j的最小步数。
第一步求出原来两个数组的总和的差值Delta(DD)是多少。

第二步进行背包DP,每个物品的质量为:t=a[i]-b[i],枚举改或不改,这样做相当于是我们企图去弥补两个数组和的差异Delta。

第三步就是找到一个能够构造出来的最小的Delta就行啦。,对负数的处理可以直接加上一个很大的N。
初始化dp[0][DD]=0,其余全为INF
转移方程 dp[i][j]=min(dp[i][j],dp[i-1][j]);
dp[i][j]=min(dp[i][j],dp[i-1][j-2*t]+1);

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib><
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值