洛谷 [P1578] WC2002 奶牛浴场

本博客探讨了[P1578] WC2002 奶牛浴场问题,这是一个经典的求最大子矩阵的问题。文章通过极大化思想,详细介绍了如何枚举子矩阵的边界,包括从左到右扫描障碍点以及处理边界重合的特殊情况。还提到了可能的hack数据和正确答案,以及预处理策略,如添加特殊点以确保枚举所有极大子矩形。
摘要由CSDN通过智能技术生成

本题是一道用极大化思想求最大子矩阵的经典题目。这个题目很出名,可以在百度搜索王知昆国家队dalao的论文,其中说的非常详细。
先枚举极大子矩形的左边界,然后从左到右依次扫描每一个障碍点,并不断修改可行的上下边界,从而枚举出所有以这个定点为左边界的极大子矩形。
需要注意的是,如果扫描到的点不在当前的上下边界内,那么就不需要对这个点进行处理。

这样做是否将所有的极大子矩形都枚举过了呢?
可以发现,这样做只考虑到了左边界覆盖一个点的矩形,因此我们还需要枚举左边界与整个矩形的左边界重合的情况。这还可以分为两类情况。一种是左边界与整个举行的左边界重合,而右边界覆盖了一个障碍点的情况,对于这种情况,可以用类似的方法从右到左扫描每一个点作为右边界的情况.
hack data:10 10
3 3 0 8 2 3 9
正确答案应该是72。

另一种是左右边界均与整个矩形的左右边界重合的情况,对于这类情况我们可以在预处理中完成:先将所有点按纵坐标排序,然后可以得到以相邻两个点的纵坐标为上下边界,左右边界与整个矩形的左右边界重合的矩形,显然这样的矩形也是极大子矩形,因此也需要被枚举到。
对于开始预处理,需要人为添加0,0;0,l;w,0;l,w四个点

#include <iostream>
#include <cstdio>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值