使用labelme打标签,详细图文教程

本文档介绍了如何使用labelme工具进行图像语义分割的标签工作,包括安装、文件位置关系、工具操作、快捷键以及代码转换标签文件至统一格式的步骤。此外,还提供了一个详细的代码示例,展示如何将labelme生成的标签转换为8位彩色图,用于后续的语义分割任务。
该文章已生成可运行项目,

在这里插入图片描述

💪图像算法工程师 | 深耕并挚爱的图像处理💪
💪🧑‍💻🔍✨📈 持续为你点亮技术灯塔,专栏最新动态如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
📝《C++》
📝《Qt》


在这里插入图片描述

做图像语义分割,打标签时需要用到labelme工具,下面总结了该工具的详细使用教程。

labelme工具是一个纯手工工具,推荐一个半自动标注工具ISAT,类似PS中的魔棒工具,点击目标物体自动框选,后台运行的是深度学习模型(多模型可选择),框选精度和打标签效率贼高,非常推荐学者使用此工具打标签,使用方法见:半自动打标签工具ISAT安装及使用教程

想使用Labelimg制作VOC格式数据集或yolo格式数据集,详细教程见我另外一篇博文:Labelimg制作VOC格式数据集或yolo格式数据集

想使用CVAT制作COCO格式数据集或者VOC格式数据集,详细教程见我另外一篇博文:CVAT制作COCO格式数据集或VOC格式数据集

制作VOC格式数据集,想使用精灵标注助手的,详细教程见我另外一篇博文:精灵标注助手制作VOC格式数据集

一、安装labelme工具

进入到对应的虚拟环境后输入下面命令安装即可。注意:安装的版本,建议安装3.16.7版本,其它版本的容易出错:

pip install labelme==3.16.7 -i https://mirrors.aliyun.com/pypi/simple/

具体的安装样纸见下:

在这里插入图片描述

在这里插入图片描述

二、文件位置关系

文件夹中的图片和标签图存放位置关系见下:

在这里插入图片描述

三、labelme工具

打开labelme工具后的样纸见下:

在这里插入图片描述

使用前首先勾选自动保存功能,如下:

在这里插入图片描述

下面是常用按钮选项功能介绍:

在这里插入图片描述

下面是打标签的实际例子:

在这里插入图片描述

自动保存后的样纸见下:

在这里插入图片描述

四、labelme工具的快捷键

我自己常用到的快捷键就D(打开上一张图片),A(打开下一张图片),Ctrl+Z撤销上一个点。

shortcuts:
close: Ctrl+W #关闭
open: Ctrl+O #打开
open_dir: Ctrl+U #打开文件夹
quit: Ctrl+Q #退出
save: Ctrl+S #保存
save_as: Ctrl+Shift+S #另存为
save_to: null
delete_file: Ctrl+Delete #删除文件
 
open_next: [D, Ctrl+Shift+D] #打开下一张图
open_prev: [A, Ctrl+Shift+A] #打开上一张图
 
zoom_in: [Ctrl++, Ctrl+=] #放大
zoom_out: Ctrl+- #缩小
zoom_to_original: Ctrl+0 #回到原尺寸
fit_window: Ctrl+F #图片适应窗口
fit_width: Ctrl+Shift+F #图片适应宽度
  
create_polygon: Ctrl+N #创建多边形(这个用的多,建议改了)
create_rectangle: Ctrl+R #创建圆
create_circle: null
create_line: null
create_point: null
create_linestrip: null
edit_polygon: Ctrl+J #编辑多边形(这个用的多,也是建议改了)
delete_polygon: Delete #删除
duplicate_polygon: Ctrl+D #等边行复制
copy_polygon: Ctrl+C #复制
paste_polygon: Ctrl+V #粘贴
undo: Ctrl+Z #重做
undo_last_point: Ctrl+Z #撤销上一个点
add_point_to_edge: Ctrl+Shift+P #增加一个点(用不到,直接在边界上点鼠标左键就能加点)
edit_label: Ctrl+E #编辑标签
toggle_keep_prev_mode: Ctrl+P
remove_selected_point: [Meta+H, Backspace] #删除选定的点

五、代码(将标签文件转为统一固定格式)

使用下面的代码进行转换,代码中需要修改的地方见下:

在这里插入图片描述

在这里插入图片描述

详细代码见下:

import base64
import json
import os
import os.path as osp

import numpy as np
import PIL.Image
from labelme import utils

'''
制作自己的语义分割数据集需要注意以下几点:
1、我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误,
   具体错误为:Too many dimensions: 3 > 2
   安装方式为命令行pip install labelme==3.16.7
2、此处生成的标签图是8位彩色图,与视频中看起来的数据集格式不太一样。
   虽然看起来是彩图,但事实上只有8位,此时每个像素点的值就是这个像素点所属的种类。
   所以其实和视频中VOC数据集的格式一样。因此这样制作出来的数据集是可以正常使用的。也是正常的。
'''
if __name__ == '__main__':
    jpgs_path   = "datasets/JPEGImages"
    pngs_path   = "datasets/SegmentationClass"
    # classes     = ["_background_","person", "car", "motorbike", "dustbin","chair","fire_hydrant","tricycle","bicycle","stone"]
    classes     = ["_background_","cat"]
    
    count = os.listdir("./datasets/before/") 
    for i in range(0, len(count)):
        path = os.path.join("./datasets/before", count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
                
            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))

            new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all*(np.array(lbl) == index_json)

            # utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
            # print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0] + '.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

六、总结

本文介绍了图像语义分割任务中常用的标注工具Labelme的详细使用教程。主要内容包括:1) Labelme工具的安装方法(推荐3.16.7版本);2) 文件存储位置的组织方式;3) 工具界面功能详解及标注示例;4) 常用快捷键说明;5) 提供将标注文件转换为统一格式的Python代码。文章还推荐了半自动标注工具ISAT,并给出了其他常用标注工具(Labelimg、CVAT等)的制作教程链接。教程内容全面,从安装到使用再到数据格式转换,为图像分割任务的标注工作提供了完整的技术指导。

🌟 感谢一路看到这里!

若本文对您有所启发,请毫不吝啬地留下 👍 点赞、⭐ 收藏、✍️ 评论三连——你的每一次互动,都是我持续输出干货的最大动力!

更多精彩内容已就绪:扫码关注下面「视觉研坊」 📸,让实战教程、独家案例与前沿资讯第一时间与你相遇!

本文章已经生成可运行项目
<think>我们正在讨论PerfEye中的标签功能。根据用户的问题,他们想知道如何在PerfEye中进行打标签操作以及标签功能的使用方法。 由于PerfEye是一个性能分析工具,标签功能通常用于对测试结果进行分类、标记以便于后续的筛选和分析。 步骤一般包括: 1. 创建标签:定义标签名称,可能还有颜色等属性。 2. 应用标签:在测试结果上打标签。 3. 管理标签:编辑、删除或合并标签。 4. 使用标签筛选:在查看测试结果时,通过标签进行过滤。 由于不同工具的具体操作可能不同,这里我们假设PerfEye的标签功能通过其Web界面操作。 下面我将分步骤说明: ### 1. 创建标签 - 通常,在标签管理页面(可能位于设置或专门的标签管理模块)中,可以创建新标签。 - 输入标签名称,选择颜色(如果有的话),然后保存。 ### 2. 为测试结果打标签 - 在测试结果列表页面,选择需要打标签的测试结果(可能通过复选框选择单个或多个)。 - 点击“打标签”或“添加标签”按钮,然后从已有标签中选择,或者创建新标签(如果支持即时创建)。 - 确认后,标签就会应用到选中的测试结果上。 ### 3. 管理标签 - 在标签管理页面,可以对标签进行编辑(如改名、改颜色)或删除。 - 注意:删除标签可能会将其从所有测试结果上移除。 ### 4. 使用标签筛选 - 在测试结果列表页面,通常会有一个筛选器,其中可以选择一个或多个标签,然后只显示带有这些标签的测试结果。 另外,有些工具还支持在测试计划或测试执行时自动打标签,这需要在测试配置中设置。 由于没有具体的PerfEye界面截图,以上是一般性步骤。具体操作请参考PerfEye的官方文档或帮助中心。 下面,我将生成相关问题。 §§相关问题§§ 1. PerfEye中如何批量给测试结果打标签? 2. 在PerfEye中,标签能否用于跨项目共享? 3. PerfEye的标签功能是否支持API操作? 4. 如何删除PerfEye中的标签?删除后对已标记的测试结果有什么影响?</think>### PerfEye 标签标记功能使用指南 PerfEye 的标签功能主要用于对性能测试结果进行分类和标记,便于后续筛选、分析和对比。以下是具体操作步骤: #### **1. 创建标签** - 进入测试报告页面 → 点击"标签管理" → 输入标签名称(如`高并发`、`内存泄漏`) - 支持设置标签颜色和描述(可选) - 创建后标签会保存在项目标签库中[^1] #### **2. 标记测试结果** - **单条标记**:在测试报告列表中勾选目标报告 → 点击"添加标签"按钮 → 选择已有标签或创建新标签 - **批量标记**:全选/多选报告 → 点击顶部工具栏"批量标记" → 选择标签(支持同时添加多个标签) - **自动化标记**:在测试脚本中添加标签参数: ```python # JMeter 示例 user_properties = { "perfeye.tags": "API_v2,压力测试" # 用逗号分隔多个标签 } ``` #### **3. 标签应用场景** - **结果筛选**:在报告列表页使用标签过滤器,例如只看`高并发`标签的报告 - **趋势对比**:选择相同标签的历史报告进行性能变化分析 - **问题归类**:用`内存泄漏`、`响应超时`等标签标记问题报告 - **团队协作**:通过`待审核`、`已验证`标签跟踪报告状态 #### **4. 标签管理技巧** - 权限控制:管理员可设置标签创建/使用权限 - 标签合并:在标签管理页合并冗余标签 - 快捷操作:在报告详情页点击`+`号直接添加标签 - 自动清理:设置180天未使用标签自动归档[^2] > ⚠️ **注意事项** > - 单个报告最多支持10个标签 > - 删除标签后历史关联关系会被解除 > - 标签名称区分大小写(`Prod`和`prod`视为不同标签)
评论 136
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值