💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
📝《C++》
📝《Qt》
上一篇博文中我详细讲解了手动编译OpenCV库后(Windows上VSCode中配置MinGW、C++和手动自编译安装OpenCV),配置到VSCode的过程,其中的构建编译过程问题众多,不想麻烦的学者,可以直接使用其他大佬已经编译好的OpenCV库,使用方法,详看下面教程。
目录
一、下载第三方OpenCV库
下载第三方OpenCV库的地址为:OpenCV_third
打开链接后向下滑动,找到自己要下载的版本,见下:
下载解压后的样子见下:
其他人已经编译好的OpenCV动态链接库位置见下:
二、添加环境变量
将第三方OpenCV库添加到系统环境变量中,见下:
三、VSCode中配置OpenCV库
3.1 测试代码
新建一个文件夹,创建一个.cpp脚本,脚本中使用下面测试代码:
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main() {
// 指定图片路径
string path = "panda.png";
cv::Mat img = imread(path); // 读取图像
// 显示图像
imshow("Display Image", img);
// imshow("Display Image", test);
// 等待按键按下,关闭窗口
waitKey(0);
return 0;
}
3.2 c_cpp_properties.json文件配置
先点击.cpp脚本,用快捷键Ctrl+shift+P打开搜索栏输入:C/C++ Edit Configurations(UI)
打开后选择编译器路径和导入头文件路径:
上图中的MinGW,如果有学者不知道是什么,也不知道怎么安装,见我上一篇博文第一章节(MinGW)。
其它参数可以保持默认,根据自己情况修改。
这些配置好的参数在c_cpp_properties.json文件中查看,见下:
3.3 tasks.json文件配置
创建一个tasks.json文件来告诉VS Code如何构建(编译)程序。该任务将调用g++编译器基于源代码创建可执行文件。先选中脚本.cpp文件, 按快捷键Ctrl+Shift+P调出命令面板,输入tasks,选择“Tasks:Configure Default Build Task”:
选择“C/C++: g++.exe build active file”:
打开tasks.json文件后,需要自己手动修改的地方见下:
完整的tasks.json文件内容见下:
{
"version": "2.0.0",
"tasks": [
{
"type": "cppbuild",
"label": "C/C++: g++.exe",
"command": "F:/APP/MinGW/mingw64/bin/g++.exe",
"args": [
"-fdiagnostics-color=always",
"-g",
"${file}",
"-I", "F:/APP/OpenCV_4.5.2_other/OpenCV-MinGW-Build-OpenCV-4.5.2-x64/include", // 包含路径 头文件 编译的时候到这个路径下找头文件 编译审生成可重定位文件
"-L", "F:/APP/OpenCV_4.5.2_other/OpenCV-MinGW-Build-OpenCV-4.5.2-x64/x64/mingw/bin", // 库路径 动态链接库地址,可执行文件运行起来需要这些库提供的机器码
// "-l","libopencv_world4100", // 链接需要使用这些dll作为可重定位文件
"-l","libopencv_calib3d452",
"-l","libopencv_photo452",
"-l","libopencv_core452",
"-l","libopencv_stitching452",
"-l","libopencv_dnn452",
"-l","libopencv_video452",
"-l","libopencv_features2d452",
"-l","libopencv_videoio452",
"-l","libopencv_flann452",
"-l","libopencv_gapi452",
"-l","libopencv_highgui452",
"-l","libopencv_imgcodecs452",
"-l","libopencv_imgproc452",
"-l","libopencv_ml452",
"-l","opencv_videoio_ffmpeg452_64",
"-l","libopencv_objdetect452",
"-o",
"${fileDirname}\\${fileBasenameNoExtension}.exe" // fileDirname就是test.cpp所在文件夹的绝对路径
],
"options": {
"cwd": "F:/APP/MinGW/mingw64/bin"
},
"problemMatcher": [
"$gcc"
],
"group": {
"kind": "build",
"isDefault": true
},
"detail": "编译器: F:/APP/MinGW/mingw64/bin/g++.exe"
}
]
}
3.4 launch.json文件配置
在.vscode文件夹中产生一个launch.json文件,用来配置调试的相关信息。点击菜单栏的Debug–>Start Debugging:
选择C++(GDB/LLDB)
创建好launch.json文件后,自动生成的内容只有两行,其它内容需要自己填补,我这里提供内容,学者在我提供内容基础上需要修改的地方见下:
launch.json文件内容见下:
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "(gdb) Launch",
// "preLaunchTask": "g++.exe build active file",//调试前执行的任务,就是之前配置的tasks.json中的label字段
"preLaunchTask": "C/C++: g++.exe",
"type": "cppdbg",//配置类型,只能为cppdbg
// "label": "C/C++: g++.exe build active file",
"request": "launch",//请求配置类型,可以为launch(启动)或attach(附加)
"program": "${fileDirname}\\${fileBasenameNoExtension}.exe",//调试程序的路径名称
"args": [],//调试传递参数
// "args": ["/F","${fileDirname}\\${fileBasenameNoExtension}.exe","&","pause"],//调试传递参数
// "stopAtEntry": false,
// "stopAtEntry": true,
"stopAtEntry": false,
// "cwd": "${workspaceFolder}",
"cwd": "${fileDirname}",
"environment": [],
// "externalConsole": true,//true显示外置的控制台窗口,false显示内置终端
"externalConsole": false,//true显示外置的控制台窗口,false显示内置终端
"MIMode": "gdb",
"miDebuggerPath": "F:/APP/MinGW/mingw64/bin/gdb.exe",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
],
// "preLaunchTask": "g++.exe build active file",
// "internalConsoleOptions": "neverOpen"
// "preLaunchTask": "build", // Ensure build task runs before launch
"internalConsoleOptions": "neverOpen"
}
]
}
四、测试OpenCV库是否配置成功
上面配置都弄好后,运行3.1中的测试脚本,随便读入一张图像,如果能正常显示图像,说明VSCode中配置第三方OpenCV库成功。
五、总结
以上就是VSCode中配置并快速使用第三方OpenCV库的详细教程,想自己动手编译OpenCV库的学者,看我的上一篇博文。
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!