
GAN
文章平均质量分 96
视觉研坊
刀不磨生锈,人不学落后!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
风格迁移——CAP-VSTNet训练自己数据集并推理测试(详细图文教程)
CAP-VSTNet是2023年提出的风格迁移网络,它在处理风格迁移时表现出了优秀的性能。这个网络包括一个新的可逆残差网络和一个无偏线性变换模块,用于多功能风格转移。CAP-VSTNet的主要目标是解决内容相似度损失(包括特征和像素相似度)问题,这是导致逼真和视频风格迁移中出现伪影的主要问题。根据相关研究,CAP-VSTNet在多功能风格转移上表现出了有效性,并且可以产生较好的定性和定量结果。这意味着CAP-VSTNet能够在保留内容相似性的同时,实现高质量的风格迁移。原创 2024-05-08 20:15:00 · 3727 阅读 · 23 评论 -
使用CycleGAN训练自己制作的数据集,通俗教程,快速上手(详细图文教程)
总结了使用**CycleGAN**训练自己制作的数据集,这里的教程例子主要就是官网给出的斑马变马,马变斑马,两个不同域之间的相互转换。教程中提供了官网给的源码包和我自己调试优化好的源码包,大家根据自己的情况下载使用,推荐学习者下载我提供的源码包,可以少走一些弯路,按照我的教程,能较快上手训练使用...原创 2022-07-22 15:57:06 · 57872 阅读 · 499 评论