DKT+模型

本文分析了DKT模型存在的重构错误和预测状态波动问题,并提出了解决方案。针对重构错误,引入了重构误差正则化项,以确保模型考虑当前学生知识状态。对于预测状态波动,通过波动度量w1和w2进行正则化,平滑知识状态转换。作者实现了改进后的DKT+模型并提供了代码。
摘要由CSDN通过智能技术生成

《Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization》

DKT模型存在的两个问题

1. 无法重构观察到的输入 :DKT有时候不能重构观察到的输入,因为模型的预测有时候是反常的。例如某个学生答对了一个问题 s i s_i si,该学生对该知识点 s i s_i si的掌握反而是下降的。
2. 预测状态的波动:随着时间的推移,预测的状态是波动的和不稳定的;而我们期待学生的状态是平稳渐变的。

因此,作者对DKT提出了下面的改进:

  1. 用于解决重构问题的重构误差r(reconstruction error r to resolve the reconstruction problem);
  2. 用于平滑预测的知识状态转换的波动度w1和w2(waviness measures w1 and w2 to smoothen the predicted knowledge state transition.)。

解决问题1

作者在文中首先重现了第一个问题:
在这里插入图片描述
之前的DKT模型是在ASSISTment 2009数据集上面训练的,上面的这个图表示随着训练的进行,某个学生的知识状态的变化情况。在垂直维度上的标签si对应于技能标签,并且只显示那些学生已经回答过的问题。水平维度上的标签指的是在每个时间步长输入到DKT的数据。热图的颜色表示该学生在下一个时间步骤中正确回答si的预测概率。颜色越深,答对的概率越高。

从上面这个图可以看出,当这个学生答错了 s 32 s_{32} s32之后,与前一个时间步长相比,正确回答 s 32 s_{32} s32的概率反而显著增加。这个问题的原因在于DKT模型使用了下面这个损失函数:
在这里插入图片描述
具体来说,这个损失函数只考虑下一个交互作用的预测性能,而不考虑当前交互作用的预测性能。因此,当输入序列 ( ( s 32 , 0 ) , ( s 33 , 0 ) ) ((s_{32}, 0), (s_{33}, 0)) ((s32,0)(s33,0))足够频繁时,DKT模型就会了解到,如果学生答错了 s 32 s_{32} s32,他很可能会答错 s 33 s_{33} s33,而不是答错 s 32 s_{32} s32
但是也存在这样一种可能: s 32 s_{32}

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值