题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],...,k[m]。请问k[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
例如:输入一个8,输出一个18;
题解:
先来一个一般性问题:周长一定为n,这时候长length与宽width在什么情况下,达到面积s最大
s = length * width 设length = x 则:width = n/2 - x
所以 s = x * (n/2 - x)= -x^2 + n*x/2
求导s' = -2x + n/2 s' = 0 --> 得 x = n/4 (0,n/4)区间,s'>0,S单调递增 (n/4, n)区间,s'<0,S单调递减
n/4为极大值点;所以在长度x=n/4的时候,S的面积最大;
width = n/2 - x= n/2 - n/4= n/4;所以width = length 的时候 s最大
通过一般性问题得出当定长的时候,截出的子段长度相等的时候,乘积最大
回到本题
绳子长度为n,分成m分,那先设每分长度为x, 分数m=n/x;那么结果就是 n/x个 x 相乘 f(x)=x^(n/x)
所以问题就回到了n/3的个数上面:
- 当n能被3整除的时候,乘积=n^(n/3)
- 当n除3余1的时候,这时候发现多了一个1,这个1是不是很鸡肋,但是把前面的一个3拿出来,把这个一个1和前面一个3 分解为2和2,就变大了,所以乘积为 3^(n/3 - 1) * 4
- 当n除3余2的时候,乘积为n^(n/3) * 2
public class Solution {
public int cutRope(int target) {
if (target <= 0){
return 0;
}else if (target == 1 || target == 2){
return 1;
}else if (target == 3){
return 2;
}
int yushu = target % 3;
switch(yushu){
case 0 : return (int)Math.pow(3, (target / 3));
case 1 : return (int)Math.pow(3, (target / 3 - 1)) * 4;
case 2 : return (int)Math.pow(3, (target / 3)) * 2;
}
return 0;
}
}