关于智能机器人回复研究报告
- 首次互动或设计机器人导航
当打开机器人的时候,由于业务需求,可能会向服务对象提供一些机器人功能的信息,当然,也可以是简单的打招呼用语,如下图所示。
- 根据服务对象意图实现意图判断并回复
机器人面对的服务对象发送消息的时候,最主要的是需要区分该服务对象当前的意图是什么,比如打招呼的意图,又或者是寻求帮助或者暂停等需求,然后机器人再根据当前服务对象的意图去做出相应的回答,实现效果案例如下图所示。
- 实现瀑布式提问的功能会话
当机器人能够根据识别器了解意图后,机器人能够根据意图做出相应的反应。如果该意图是在定义的功能范围之内,那么就执行相应的功能,否则可以简单回复抱歉无法识别或者暂时不支持之类的。但是,很多时候,我们执行的功能可能是需要一些额外信息的,比如获取缩略图,需要用户提供图片,以及期望的大小,所以就跟正常聊天一样,机器人需要进一步询问,进行多次问答来获取必要的信息,这种我们称之为瀑布式会话,实现效果如下图所示。
- 取消对话或者重新来过
- 提示错误并重新输入
- 向消息添加丰富的卡片
其他丰富的卡片式消息内容具体参考文档地址: https://docs.microsoft.com/zh-cn/azure/bot-service/dotnet/bot-builder-dotnet-add-rich-card-attachments?view=azure-bot-service-3.0
- 实现请求付款
- 将会话从机器人转移给人工
关于转移人工C#项目地址: https://github.com/tompaana/intermediator-bot-sample
参考以上文档实现的效果,首先开启相应的通道(A会话窗口)。
然后再打开另一个会话窗口(B会话窗口),输入i'd like to talk to a human being!
再在A会话窗口同意B会话窗口的连接。
这时候A会话窗口和B会话窗口就进行了连接,就可以进行正常的沟通会话。
A窗口:
B窗口: