第三题
题目简述
假设以I和O分别表示入栈和出栈操作,栈的初试状态和终止状态均为空,判断序列是否合法。
代码
#include <iostream>
#include <string>
using namespace std;
bool judge(string str)
{
int cnt = 0;
for (int i = 0; i < str.size(); i++)
{
switch (str[i])
{
case 'I': cnt++; break;
case 'O': cnt--; break;
default:
break;
}
if (cnt < 0)
return false;
}
return cnt == 0;
}
int main()
{
if (judge("IOIIOIOO")) cout << "合法" << endl; else cout << "不合法" << endl;
if (judge("IOOIOIIO")) cout << "合法" << endl; else cout << "不合法" << endl;
if (judge("IIIOIOIO")) cout << "合法" << endl; else cout << "不合法" << endl;
if (judge("IIIOOIOO")) cout << "合法" << endl; else cout << "不合法" << endl;
}
第四题
题目简述
设单链表的表头指针为L,判断链表的n个字符是否中心对称。
代码
// 本题说判断单链表中的元素是否中心对称
// 为减少代码量,单链表改成字符串,和单链表的原理是一样的
#include <iostream>
#include <string>
using namespace std;
bool judge(string str)
{
int size = 0;
char* stk = new char[str.size()];
int mid = str.size() >> 1;
for (int i = 0; i < mid; i++) stk[size++] = str[i];
if (str.size() & 1) mid ++;
for (int i = mid; i < str.size(); i++)
if (str[i] != stk[--size])
return false;
return true;
}
int main()
{
cout << judge("xyxyx") << endl;
cout << judge("xyyx") << endl;
cout << judge("xyx") << endl;
cout << judge("xxxy") << endl;
return 0;
}
第五题
题目简述
设有两个栈s1,s2共享一个存储区,为了尽量利用空间,减少溢出的可能,可采用栈顶相向,迎面增长的存储方式,设置入栈、和出栈的操作算法。
代码
#include <iostream>
#include <algorithm>
using namespace std;
#define MaxSize 100
typedef int Elemtype;
class SqStack
{
private:
Elemtype data[MaxSize];
int top[2];
public:
SqStack(){ top[0] = -1; top[1] = MaxSize; };
void push(int id, int x); // 向指定Id的栈push
Elemtype pop(int id); // 弹出指定Id的栈的栈顶元素,并将值返回
bool isEmpty(int id); // 判断栈是不是空
};
void SqStack::push(int id, int x)
{
if (id < 0 || id > 1) { cerr << "ID不合法!" << endl; return; }
if (top[1] - top[0] == 1) { cerr << "栈满, push失败!" << endl; return; }
if (id) data[--top[1]] = x;
else data[++top[0]] = x;
}
Elemtype SqStack::pop(int id)
{
if (id < 0 || id > 1) { cerr << "ID不合法!" << endl; return (Elemtype)-1; }
if (top[id] == -1 || top[id] == MaxSize){ cerr << "栈为空! pop失败!" << endl; return (Elemtype)-1; }
if (id) return data[top[1]++];
return data[top[0]--];
}
bool SqStack::isEmpty(int id){
if (id == 0) return top[0] == -1;
return top[1] == MaxSize;
}
int main()
{
SqStack stk;
for (int i = 0; i < 105; i++){
if (i & 1) stk.push(0, i);
else stk.push(1, i);
}
// 0栈出
while (!stk.isEmpty(0)){
cout << stk.pop(0) << " ";
}
cout << endl;
while (!stk.isEmpty(1)){
cout << stk.pop(1) << " ";
}
cout << endl;
}