HashMap源码分析——常用方法详解

本文深入分析了HashMap的resize()方法,该方法用于调整HashMap中table的容量。文章详细解读了resize()的源码实现,包括如何计算新容量、创建新哈希表以及将原有元素重新映射到新表的过程。通过对put方法和get方法的简要介绍,进一步突出了resize()在HashMap操作中的重要性。
摘要由CSDN通过智能技术生成

首先介绍resize()这个方法,在我看来这是HashMap中一个非常重要的方法,是用来调整HashMap中table的容量的,在很多操作中多需要重新计算容量。
源码如下:

1 final Node<K,V>[] resize() {
 2         Node<K,V>[] oldTab = table;
 3         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4         int oldThr = threshold;
 5         int newCap, newThr = 0;
 6         if (oldCap > 0) {
 7             if (oldCap >= MAXIMUM_CAPACITY) {
 8                 threshold = Integer.MAX_VALUE;
 9                 return oldTab;
10             }
11             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
12                      oldCap >= DEFAULT_INITIAL_CAPACITY)
13                 newThr = oldThr << 1; // double threshold
14         }
15         else if (oldThr > 0) // initial capacity was placed in threshold
16             newCap = oldThr;
17         else {               // zero initial threshold signifies using defaults
18             newCap = DEFAULT_INITIAL_CAPACITY;
19             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
20         }
21         if (newThr == 0) {
22             float ft = (float)newCap * loadFactor;
23             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
24                       (int)ft : Integer.MAX_VALUE);
25         }
26         threshold = newThr;
27         @SuppressWarnings({"rawtypes","unchecked"})
28             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
29         table = newTab;
30         if (oldTab != null) {
31             for (int j = 0; j < oldCap; ++j) {
32                 Node<K,V> e;
33                 if ((e = oldTab[j]) != null) {
34                     oldTab[j] = null;
35                     if (e.next == null)
36                         newTab[e.hash & (newCap - 1)] = e;
37                     else if (e instanceof TreeNode)
38                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
39                     else { // preserve order
40                         Node<K,V> loHead = null, loTail = null;
41                         Node<K,V> hiHead = null, hiTail = null;
42                         Node<K,V> next;
43                         do {
44                             next = e.next;
45                             if ((e.hash & oldCap) == 0) {
46                                 if (loTail == null)
47                                     loHead = e;
48                                 else
49                                     loTail.next = e;
50                                 loTail = e;
51                             }
52                             else {
53                                 if (hiTail == null)
54                                     hiHead = e;
55                                 else
56                                     hiTail.next = e;
57                                 hiTail = e;
58                             }
59                         } while ((e = next) != null);
60                         if (loTail != null) {
61                             loTail.next = null;
62                             newTab[j] = loHead;
63                         }
64                         if (hiTail != null) {
65                             hiTail.next = null;
66                             newTab[j + oldCap] = hiHead;
67                         }
68                     }
69                 }
70             }
71         }
72         return newTab;
73     }

可以看到这段代码非常庞大,其内容可以分为两大部分:
第一部分计算并生成新的哈希表(空表):

 1 // 记录原表
 2 Node<K,V>[] oldTab = table;
 3 // 得到原来哈希表的总长度,及原来总容量
 4 int oldCap = (oldTab == null) ? 0 : oldTab.length;
 5 // 得到原来最佳容量
 6 int oldThr = threshold;
 7 // 存放新的总容量、新最佳容量的变量
 8 int newCap, newThr = 0;
 9 if (oldCap > 0) {
10 // 原来总容量达到或超过HashMap的最大容量,则最佳容量设置为int类型的最大值
11 // 且原来容量不变,直接返回,不做后需调整
12    if (oldCap >= MAXIMUM_CAPACITY) {
13        threshold = Integer.MAX_VALUE;
14        return oldTab;
15    }
16    // 让新的总容量等于原来容量的二倍
17    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
18             oldCap >= DEFAULT_INITIAL_CAPACITY)
19        // 新的最佳容量也变为原来的二倍
20        newThr = oldThr << 1; 
21 }
22 // 原来总容量为0,将新的总容量设置为最佳容量,构造方法出入参数是一个派生的Map的时候,就会使用派生的Map计算出新的最佳容量
23 else if (oldThr > 0) 
24    newCap = oldThr;
25 else { 
26 // 原来总容量和原来最佳容量都没有定义
27 // 新的总容量设为默认值16
28 // 新的最佳容量=默认负载因子×默认容量=0.75×16=12              
29    newCap = DEFAULT_INITIAL_CAPACITY;
30    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
31 }
32 // 判断上述操作后新的最佳容量是否计算,若没有,就利用负载因子和新的总容量计算
33 if (newThr == 0) {
34    float ft = (float)newCap * loadFactor;
35    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
36              (int)ft : Integer.MAX_VALUE);
37 }
38 // 更新当前的最佳容量
39 threshold = newThr;
40 @SuppressWarnings({"rawtypes","unchecked"})
41 // 生成新的哈希表,即一维数组
42 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
43 // 更新哈希表
44 table = newTab;

可以看出上述操作仅仅是生成了一张大小合适的哈希表,但表还是空的,后面的操作就是把以前的表中的元素重新排列,移动到当前表中合适的位置!

第二部分将原表元素移动到新表合适的位置:

 1 // 先判断原表是或否为空
 2 if (oldTab != null) {
 3     // 遍历原表(一维数组)中的所有元素,
 4    for (int j = 0; j < oldCap; ++j) {
 5            // 记录原来一维数组中下标为j的元素
 6        Node<K,V> e;
 7        // 只对有效元素进行操作
 8        if ((e = oldTab[j]) != null) {
 9                //将原表中的元素置空
10            oldTab[j] = null;
11            if (e.next == null)
12            // 当前元素没有后继,那么直接把它放在新表中合适位置
13            // 其中e.hash & (newCap - 1)在我上一篇博客有介绍
14            // 就是以该节点的hash值和新表总容量取余,将余数作为下标
15                newTab[e.hash & (newCap - 1)] = e;
16            else if (e instanceof TreeNode)
17                // 当前元素有后继,且后继是红黑树
18                // 进行有关红黑树的相应操作
19                // 这里不详细介绍红黑树的操作
20                ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
21            else { 
22            // 这里就进行有关链表的移动
23                   // 这两组结点变量,分别代表两条不同链表的头和尾
24                   // 低位的头和尾 
25                Node<K,V> loHead = null, loTail = null;
26                // 高位的头和尾
27                Node<K,V> hiHead = null, hiTail = null;
28                // 下一节点
29                Node<K,V> next;
30                do {
31                       // 让next等于当前结点的后继结点
32                    next = e.next;
33                    // 这个位运算实际上判断的是该节点在新表中的位置是否发生改变
34                    // 成立则说明没有改变,还是原来表中下标为j的位置
35                    if ((e.hash & oldCap) == 0) {
36                            // 若是首结点,则让低位的头等于当前结点
37                        if (loTail == null)
38                            loHead = e;
39                        else
40                        // 若不是首结点,则让低位的尾等于当前结点
41                            loTail.next = e;
42                        // 让低位的尾移动到当前
43                        loTail = e;
44                    }
45                    // 这里就说明其在新表中的位置发生了改变,则要将其放入另一条链表
46                    else {
47                           // 若是首结点,则让高位的头等于当前结点
48                        if (hiTail == null)
49                            hiHead = e;
50                        else
51                               // 若不是首结点,则让高位的尾等于当前结点
52                            hiTail.next = e;
53                        // 让高位的尾移动到当前
54                        hiTail = e;
55                    }
56                } while ((e = next) != null);
57                // 原来位置的这条链表还存在
58                if (loTail != null) {
59                       // 置空低位的尾的next
60                    loTail.next = null;
61                    // 将该链表的头结点放入新表下标为j的位置,即原表中的原位置
62                    newTab[j] = loHead;
63                }
64                // 新位置上的链表存在
65                if (hiTail != null) {
66                       // 置空高位的尾的next
67                    hiTail.next = null;
68                    // 将该链表的头结点放入新表中下标为j+原表长度的位置
69                    newTab[j + oldCap] = hiHead;
70                }
71            }
72        }
73    }
74 }
75 return newTab;

链表的移动如图:


可以看出,这个方法可以使得单个结点重新散列,链表可以拆分成两条,红黑树重新移动,这样使得新的哈希表分布比以前均匀!

下面来分析put方法:
源码如下:

1  public V put(K key, V value) {
2      return putVal(hash(key), key, value, false, true);
3  }

这里我们可以知道其调用了内部的一个putVal方法:
首先第一个参数是通过内部的hash方法(在前一篇博客有介绍过)计算出键对象的hash(int类型)值,再把key和value对象传过去,置于后面两个参数先不着急
先来看下putVal方法是如何说明的:

 1 /**
 2      * Implements Map.put and related methods
 3      *
 4      * @param hash hash for key
 5      * @param key the key
 6      * @param value the value to put
 7      * // 看以看出,put方法传入的onlyIfAbsent是false,那么就会改变原来已存在的值
 8      * @param onlyIfAbsent if true, don't change existing value
 9      * // 这个参数先不考虑,往后慢慢分析
10      * @param evict if false, the table is in creation mode.
11      * @return previous value, or null if none
12      */
13     final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)

该方法内容:

 1  // 用于保存原表
 2  Node<K,V>[] tab;
 3  // 保存下标为hash的结点 
 4  Node<K,V> p;
 5  // n用来记录表长
 6  int n, i;
 7  // 先检查原表是否存在,或者是空表
 8  if ((tab = table) == null || (n = tab.length) == 0)
 9       // 如果为空就生成一张大小为16的新表
10      n = (tab = resize()).length;
11  if ((p = tab[i = (n - 1) & hash]) == null)
12       // 如果以该方法形参hash对表长取余,令其作为下标的表中的元素为空,那么就产生一个新结点放在这个位置
13      tab[i] = newNode(hash, key, value, null);
14  else {
15       // 如果该结点不空,那么就会出现两种情况:链表和红黑树
16      Node<K,V> e; K k;
17      if (p.hash == hash &&
18          ((k = p.key) == key || (key != null && key.equals(k))))
19          // 如果当前结点的hash并且key值(指针值和内容值)相等,由于onlyIfAbsent是false,那么就会改变这个结点的V值,先用e将其保存起来
20          e = p;
21      else if (p instanceof TreeNode)
22          // 如果当前结点是一棵红黑树,那么就进行红黑树的平衡,这里不讨论红黑树的问题
23          e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24      else {
25           // 这里就对链表进行操作
26           // 从头开始遍历这条链表
27          for (int binCount = 0; ; ++binCount) {
28              if ((e = p.next) == null) {
29                   // 如果该节点的next为空
30                   // 就需要新增一个结点追加其后
31                  p.next = newNode(hash, key, value, null);
32                  if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
33                       // 这里进行红黑树阈值的判断,由于TREEIFY_THRESHOLD默认值是8,binCount是从0开始,那么当链表长度大于等于8的时候,就将该链表转换成红黑树,并且结束循环
34                      treeifyBin(tab, hash);
35                  break;
36              }
37              // 这里和之前的判断是一样的
38              if (e.hash == hash &&
39                  ((k = e.key) == key || (key != null && key.equals(k))))
40                  break;
41              // 让p = p->next
42              p = e;
43          }
44      }
45      // 若e非空,则就是说明原表中存在hash值相等,且key的值或内容相同的结点
46      if (e != null) { 
47          // 将原来的V值保存
48          V oldValue = e.value;
49          // 判断是否是需要进行覆盖原来V值的操作
50          if (!onlyIfAbsent || oldValue == null)
51              // 覆盖原来的V值
52              e.value = value;
53          // 这个方法是一个空的方法,预留的一个操作,不用去管它     
54          afterNodeAccess(e);
55          // 由于在这里面的操作只是替换了原来的V值,并没有改变原来表的大小,直接返回oldValue
56          return oldValue;
57      }
58  }
59  // 操作数自增
60  ++modCount;
61  // 实际大小自增
62  // 若其大于最佳容量进行扩容的操作,使其分布均匀
63  if (++size > threshold)
64      resize();
65  // 这也是一个空的方法,预留操作
66  afterNodeInsertion(evict);
67  // 并没有替换原来的V值,返回null
68  return null;

下来是get方法,逻辑相对简单不难分析:

1 public V get(Object key) {
2     Node<K,V> e;
3     return (e = getNode(hash(key), key)) == null ? null : e.value;
4 }

同样也是通过hash方法计算出key对象的hash值,调用内部的getNode方法:

 1 final Node<K,V> getNode(int hash, Object key) {
 2     // 记录表对象
 3     Node<K,V>[] tab;
 4     // 记录第一个结点和当前节点 
 5     Node<K,V> first, e; 
 6     // 记录表长
 7     int n; 
 8     // 记录K值
 9     K k;
10     // 表非空或者长度大于0才对其操作
11     // 并且key的hash值对表长取余为下标,其所对应的哈希表中的结点存在
12     if ((tab = table) != null && (n = tab.length) > 0 &&
13         (first = tab[(n - 1) & hash]) != null) {
14         // 当前结点满足情况,直接返回给该节点
15         if (first.hash == hash && 
16             ((k = first.key) == key || (key != null && key.equals(k))))
17             return first;
18         // 后面就分为两种情况:在红黑树或者链表中查找
19         if ((e = first.next) != null) {
20             // 当前结点是红黑树,进行红黑树的查找
21             if (first instanceof TreeNode)
22                 return ((TreeNode<K,V>)first).getTreeNode(hash, key);
23             // 进行链表的遍历
24             do {
25                 if (e.hash == hash &&
26                     ((k = e.key) == key || (key != null && key.equals(k))))
27                     return e;
28             } while ((e = e.next) != null);
29         }
30     }
31     return null;
32 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值