首先介绍resize()这个方法,在我看来这是HashMap中一个非常重要的方法,是用来调整HashMap中table的容量的,在很多操作中多需要重新计算容量。
源码如下:
1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 if (oldCap >= MAXIMUM_CAPACITY) {
8 threshold = Integer.MAX_VALUE;
9 return oldTab;
10 }
11 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
12 oldCap >= DEFAULT_INITIAL_CAPACITY)
13 newThr = oldThr << 1; // double threshold
14 }
15 else if (oldThr > 0) // initial capacity was placed in threshold
16 newCap = oldThr;
17 else { // zero initial threshold signifies using defaults
18 newCap = DEFAULT_INITIAL_CAPACITY;
19 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
20 }
21 if (newThr == 0) {
22 float ft = (float)newCap * loadFactor;
23 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
24 (int)ft : Integer.MAX_VALUE);
25 }
26 threshold = newThr;
27 @SuppressWarnings({"rawtypes","unchecked"})
28 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
29 table = newTab;
30 if (oldTab != null) {
31 for (int j = 0; j < oldCap; ++j) {
32 Node<K,V> e;
33 if ((e = oldTab[j]) != null) {
34 oldTab[j] = null;
35 if (e.next == null)
36 newTab[e.hash & (newCap - 1)] = e;
37 else if (e instanceof TreeNode)
38 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
39 else { // preserve order
40 Node<K,V> loHead = null, loTail = null;
41 Node<K,V> hiHead = null, hiTail = null;
42 Node<K,V> next;
43 do {
44 next = e.next;
45 if ((e.hash & oldCap) == 0) {
46 if (loTail == null)
47 loHead = e;
48 else
49 loTail.next = e;
50 loTail = e;
51 }
52 else {
53 if (hiTail == null)
54 hiHead = e;
55 else
56 hiTail.next = e;
57 hiTail = e;
58 }
59 } while ((e = next) != null);
60 if (loTail != null) {
61 loTail.next = null;
62 newTab[j] = loHead;
63 }
64 if (hiTail != null) {
65 hiTail.next = null;
66 newTab[j + oldCap] = hiHead;
67 }
68 }
69 }
70 }
71 }
72 return newTab;
73 }
可以看到这段代码非常庞大,其内容可以分为两大部分:
第一部分计算并生成新的哈希表(空表):
1 // 记录原表
2 Node<K,V>[] oldTab = table;
3 // 得到原来哈希表的总长度,及原来总容量
4 int oldCap = (oldTab == null) ? 0 : oldTab.length;
5 // 得到原来最佳容量
6 int oldThr = threshold;
7 // 存放新的总容量、新最佳容量的变量
8 int newCap, newThr = 0;
9 if (oldCap > 0) {
10 // 原来总容量达到或超过HashMap的最大容量,则最佳容量设置为int类型的最大值
11 // 且原来容量不变,直接返回,不做后需调整
12 if (oldCap >= MAXIMUM_CAPACITY) {
13 threshold = Integer.MAX_VALUE;
14 return oldTab;
15 }
16 // 让新的总容量等于原来容量的二倍
17 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
18 oldCap >= DEFAULT_INITIAL_CAPACITY)
19 // 新的最佳容量也变为原来的二倍
20 newThr = oldThr << 1;
21 }
22 // 原来总容量为0,将新的总容量设置为最佳容量,构造方法出入参数是一个派生的Map的时候,就会使用派生的Map计算出新的最佳容量
23 else if (oldThr > 0)
24 newCap = oldThr;
25 else {
26 // 原来总容量和原来最佳容量都没有定义
27 // 新的总容量设为默认值16
28 // 新的最佳容量=默认负载因子×默认容量=0.75×16=12
29 newCap = DEFAULT_INITIAL_CAPACITY;
30 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
31 }
32 // 判断上述操作后新的最佳容量是否计算,若没有,就利用负载因子和新的总容量计算
33 if (newThr == 0) {
34 float ft = (float)newCap * loadFactor;
35 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
36 (int)ft : Integer.MAX_VALUE);
37 }
38 // 更新当前的最佳容量
39 threshold = newThr;
40 @SuppressWarnings({"rawtypes","unchecked"})
41 // 生成新的哈希表,即一维数组
42 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
43 // 更新哈希表
44 table = newTab;
可以看出上述操作仅仅是生成了一张大小合适的哈希表,但表还是空的,后面的操作就是把以前的表中的元素重新排列,移动到当前表中合适的位置!
第二部分将原表元素移动到新表合适的位置:
1 // 先判断原表是或否为空
2 if (oldTab != null) {
3 // 遍历原表(一维数组)中的所有元素,
4 for (int j = 0; j < oldCap; ++j) {
5 // 记录原来一维数组中下标为j的元素
6 Node<K,V> e;
7 // 只对有效元素进行操作
8 if ((e = oldTab[j]) != null) {
9 //将原表中的元素置空
10 oldTab[j] = null;
11 if (e.next == null)
12 // 当前元素没有后继,那么直接把它放在新表中合适位置
13 // 其中e.hash & (newCap - 1)在我上一篇博客有介绍
14 // 就是以该节点的hash值和新表总容量取余,将余数作为下标
15 newTab[e.hash & (newCap - 1)] = e;
16 else if (e instanceof TreeNode)
17 // 当前元素有后继,且后继是红黑树
18 // 进行有关红黑树的相应操作
19 // 这里不详细介绍红黑树的操作
20 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
21 else {
22 // 这里就进行有关链表的移动
23 // 这两组结点变量,分别代表两条不同链表的头和尾
24 // 低位的头和尾
25 Node<K,V> loHead = null, loTail = null;
26 // 高位的头和尾
27 Node<K,V> hiHead = null, hiTail = null;
28 // 下一节点
29 Node<K,V> next;
30 do {
31 // 让next等于当前结点的后继结点
32 next = e.next;
33 // 这个位运算实际上判断的是该节点在新表中的位置是否发生改变
34 // 成立则说明没有改变,还是原来表中下标为j的位置
35 if ((e.hash & oldCap) == 0) {
36 // 若是首结点,则让低位的头等于当前结点
37 if (loTail == null)
38 loHead = e;
39 else
40 // 若不是首结点,则让低位的尾等于当前结点
41 loTail.next = e;
42 // 让低位的尾移动到当前
43 loTail = e;
44 }
45 // 这里就说明其在新表中的位置发生了改变,则要将其放入另一条链表
46 else {
47 // 若是首结点,则让高位的头等于当前结点
48 if (hiTail == null)
49 hiHead = e;
50 else
51 // 若不是首结点,则让高位的尾等于当前结点
52 hiTail.next = e;
53 // 让高位的尾移动到当前
54 hiTail = e;
55 }
56 } while ((e = next) != null);
57 // 原来位置的这条链表还存在
58 if (loTail != null) {
59 // 置空低位的尾的next
60 loTail.next = null;
61 // 将该链表的头结点放入新表下标为j的位置,即原表中的原位置
62 newTab[j] = loHead;
63 }
64 // 新位置上的链表存在
65 if (hiTail != null) {
66 // 置空高位的尾的next
67 hiTail.next = null;
68 // 将该链表的头结点放入新表中下标为j+原表长度的位置
69 newTab[j + oldCap] = hiHead;
70 }
71 }
72 }
73 }
74 }
75 return newTab;
链表的移动如图:
可以看出,这个方法可以使得单个结点重新散列,链表可以拆分成两条,红黑树重新移动,这样使得新的哈希表分布比以前均匀!
下面来分析put方法:
源码如下:
1 public V put(K key, V value) {
2 return putVal(hash(key), key, value, false, true);
3 }
这里我们可以知道其调用了内部的一个putVal方法:
首先第一个参数是通过内部的hash方法(在前一篇博客有介绍过)计算出键对象的hash(int类型)值,再把key和value对象传过去,置于后面两个参数先不着急
先来看下putVal方法是如何说明的:
1 /**
2 * Implements Map.put and related methods
3 *
4 * @param hash hash for key
5 * @param key the key
6 * @param value the value to put
7 * // 看以看出,put方法传入的onlyIfAbsent是false,那么就会改变原来已存在的值
8 * @param onlyIfAbsent if true, don't change existing value
9 * // 这个参数先不考虑,往后慢慢分析
10 * @param evict if false, the table is in creation mode.
11 * @return previous value, or null if none
12 */
13 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)
该方法内容:
1 // 用于保存原表
2 Node<K,V>[] tab;
3 // 保存下标为hash的结点
4 Node<K,V> p;
5 // n用来记录表长
6 int n, i;
7 // 先检查原表是否存在,或者是空表
8 if ((tab = table) == null || (n = tab.length) == 0)
9 // 如果为空就生成一张大小为16的新表
10 n = (tab = resize()).length;
11 if ((p = tab[i = (n - 1) & hash]) == null)
12 // 如果以该方法形参hash对表长取余,令其作为下标的表中的元素为空,那么就产生一个新结点放在这个位置
13 tab[i] = newNode(hash, key, value, null);
14 else {
15 // 如果该结点不空,那么就会出现两种情况:链表和红黑树
16 Node<K,V> e; K k;
17 if (p.hash == hash &&
18 ((k = p.key) == key || (key != null && key.equals(k))))
19 // 如果当前结点的hash并且key值(指针值和内容值)相等,由于onlyIfAbsent是false,那么就会改变这个结点的V值,先用e将其保存起来
20 e = p;
21 else if (p instanceof TreeNode)
22 // 如果当前结点是一棵红黑树,那么就进行红黑树的平衡,这里不讨论红黑树的问题
23 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24 else {
25 // 这里就对链表进行操作
26 // 从头开始遍历这条链表
27 for (int binCount = 0; ; ++binCount) {
28 if ((e = p.next) == null) {
29 // 如果该节点的next为空
30 // 就需要新增一个结点追加其后
31 p.next = newNode(hash, key, value, null);
32 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
33 // 这里进行红黑树阈值的判断,由于TREEIFY_THRESHOLD默认值是8,binCount是从0开始,那么当链表长度大于等于8的时候,就将该链表转换成红黑树,并且结束循环
34 treeifyBin(tab, hash);
35 break;
36 }
37 // 这里和之前的判断是一样的
38 if (e.hash == hash &&
39 ((k = e.key) == key || (key != null && key.equals(k))))
40 break;
41 // 让p = p->next
42 p = e;
43 }
44 }
45 // 若e非空,则就是说明原表中存在hash值相等,且key的值或内容相同的结点
46 if (e != null) {
47 // 将原来的V值保存
48 V oldValue = e.value;
49 // 判断是否是需要进行覆盖原来V值的操作
50 if (!onlyIfAbsent || oldValue == null)
51 // 覆盖原来的V值
52 e.value = value;
53 // 这个方法是一个空的方法,预留的一个操作,不用去管它
54 afterNodeAccess(e);
55 // 由于在这里面的操作只是替换了原来的V值,并没有改变原来表的大小,直接返回oldValue
56 return oldValue;
57 }
58 }
59 // 操作数自增
60 ++modCount;
61 // 实际大小自增
62 // 若其大于最佳容量进行扩容的操作,使其分布均匀
63 if (++size > threshold)
64 resize();
65 // 这也是一个空的方法,预留操作
66 afterNodeInsertion(evict);
67 // 并没有替换原来的V值,返回null
68 return null;
下来是get方法,逻辑相对简单不难分析:
1 public V get(Object key) {
2 Node<K,V> e;
3 return (e = getNode(hash(key), key)) == null ? null : e.value;
4 }
同样也是通过hash方法计算出key对象的hash值,调用内部的getNode方法:
1 final Node<K,V> getNode(int hash, Object key) {
2 // 记录表对象
3 Node<K,V>[] tab;
4 // 记录第一个结点和当前节点
5 Node<K,V> first, e;
6 // 记录表长
7 int n;
8 // 记录K值
9 K k;
10 // 表非空或者长度大于0才对其操作
11 // 并且key的hash值对表长取余为下标,其所对应的哈希表中的结点存在
12 if ((tab = table) != null && (n = tab.length) > 0 &&
13 (first = tab[(n - 1) & hash]) != null) {
14 // 当前结点满足情况,直接返回给该节点
15 if (first.hash == hash &&
16 ((k = first.key) == key || (key != null && key.equals(k))))
17 return first;
18 // 后面就分为两种情况:在红黑树或者链表中查找
19 if ((e = first.next) != null) {
20 // 当前结点是红黑树,进行红黑树的查找
21 if (first instanceof TreeNode)
22 return ((TreeNode<K,V>)first).getTreeNode(hash, key);
23 // 进行链表的遍历
24 do {
25 if (e.hash == hash &&
26 ((k = e.key) == key || (key != null && key.equals(k))))
27 return e;
28 } while ((e = e.next) != null);
29 }
30 }
31 return null;
32 }