#理解应用数学#_拔剑-浆糊的传说_新浪博客

理解应用数学
   - 拔剑

一、hugh变换与RANSAC,混杂模型中的局部模型提取
1. Hough:y=F(X,A),有X的采样,可以看成y=F(A), 而X是已知量,利用每个x投票求解A
                  理论上只要有模型,有足够的采样数据,就可以用hough变换
2. Ransac:  随机抽样拟合,如果内点数超过某个阈值,则认为存在某个局部模型
对比:
(1)两者都可以求取混杂模型中的局部模型,都存在阈值设置问题。
(2)hough变换模型参数越多,投票空间越庞大,复杂度几何级增长;
(3)Ransac的可靠性和样本数和抽样数高度相关,随着样本数量增长,抽样的数字要随之增加,可以用概率模型概算抽样的至少次数;
(4) hough 变换的复杂度更受模型空间的维度的影响,ransac对样本数量更敏感。

二、卷积神经网络之卷积,将全连接简化为局部链接
(1)卷积神经网络之卷积本质上和传统图像处理的滤波算法完全一致;
(2)为什么用卷积,不用全链接?全连接规模太大了啊,考虑到一个图像区域的特征只和局部领域像素相关,因此采用局部关联的卷积可以极大降低模型复杂度,同时提高计算效率。

三、主成分分析,向量的放大和缩小
(1)主成分分析的假设很朴素:最能区分数据、最能将数据分类的某个法向量上数据最分散!而特征值越大,投影放大越大,对数据区分具有放大效应;特征值越小,向量往上面投影受压缩越厉害,越不容易区分开数据。因此,只要找到特征值top-most大的几个法向量对应平面具有最好的分割效果。
(2) 主成分分析,通常需要对数据做归一化,这样保证这种评价权值合理。

四、希尔伯特空间与傅里叶变换,先把物理意义放一边,从正交基、内积、向量合成的角度理解
(1) 希尔伯特空间,以函数建立正交基
(2)以函数计算内积
(3)函数之间的正交
(4)函数正交系构建,如何得到函数正交基的单位基
(5)傅里叶级数,有限自变量对应的无限正交基
(6)傅里叶变换,无限自变脸范围对应的无限正交基
(7)正交基的构建与单位正交基
(8)如何理解傅里叶正变换  --》本质上是已知一个函数(向量),求它在正交基上某个基(每个基)的投影值
             本质上,就是做内积,得到投影长度。               
(9)如何理解傅里叶反变换  --》本质上是向无限正交基所有基向量投影后相加
            相当于向量向某个正交基各分量投影相加,
            即已知一个向量在正交基每个基向量上的投影,通过叠加这些向量求该向量,由于无穷维向量,因此化和为积分。(也可以看成矩阵变换)
(10)为何傅里叶正变换和反变换差系数(2*pi), 为何有不同形式的正反变换公式,为何本质是等价的,原因是啥?

五、一种不严格但是容易理解泰勒展开的方式


六、极大似然估计、最大后验估计、贝叶斯估计
     (1)最大似然估计:模型一致,纯粹利用观测数据来估计模型参数,使得观测数据的概率最大。
              假设概率函数为F(x, U), 其中u为待估计模型参数,x是观测量(或者事件), 单次观测概率都是独立的,则N次观测概率为:      
                  F(x_1,x_2,...x_n , U) = F(x_1,U)*F(x_2,U)*F(x_3,U)*....F(x_n, U)
             则最大似然估计本质上要让 F(x_1,x_2,...x_n,U)最大的U,即
                 U = argmax( F(x_1,x_2, x_3, ... x_n, U)
                    = aremax( F(x_1,U) * F(x_2,U) * .... F(x_n,U)
           一般通过对F(...)取对数化成等价问题求取u,即
                 U = argmax(ln(F(x_1,U) + ln(F(x_2,U) + ...., + ln(F(x_n,U)))
         (a)  例子1, 已知某人投硬币100次,其中正面出现了90次,问正面出现的概率
                 假设 正面出现的概率为  theta, ( 即概率函数就是theta, theta即模型参数,即U 为theta),
                      F(正面,theta) = theta
                      F(反面,theta)    = 1 - theta
                 观测独立,投递100次,出现90次正面概率
                      F(x_1,x_2, x_3, x_4 ,... x_100) = (theta)^90 * (1-theta)^10
                 对数化,取似然函数 
                      U (即theta) = argmax( 90* ln(theta) + 10 * ln( 1 - theta))
                  对u (即theta) 取偏导数
                         90/theta + 10/(1-theta) = 0
                        --> 90 - 90*theta = 10*theta
                        --> theta  = 0.9
                  显然,这个概率和我们直觉一致!
           (b) 讨论2, 假设某个观测量符合正态分布,观测N次,得到
                          x_1, x_2, x_3, ... , x_n
                   求该正态分布参数( 分布中心,方差根)
                   这个高中生都知道如何求解, 
                             分布中心  u = (x_1+x_2+x_3 + ... + x_n) / N 
                              方差sigma  = sqrt(  ((x_1 - u)^2 + (x_2 - u)^2 + ... (x_n - u)^2)) / N )
                   但上述公式怎么来的呢?本质上,就是最大似然估计得到,我们下面简要推导一下,
                   由于博客对公式支持太糟糕了,我们简要描述一下。
                   — 假设正态分布函数 N(x, u, sigma ), 在本题目中 (u,sigma)是待定参数,也就是最大似然估计的量
                   — 则N次独立观测对应概率(此处为概率密度函数)
                          N(x_1,u,sigma) * N(x_2, u, sigma) * N(x_3,u,sigma) * .............. * N(x_N,u,sigma)
                   — 取对数,得到似然函数
                         ln( N(x_1,u,sigma)) + ln( N(x_3,u,sigma)) + ln( N(x_3,u,sigma)) +...+ ln( N(x_N,u,sigma))
                   —  对之求分布中心u的导数
                                 -(x_1 - u) - (x_2 - u) - (x_3 - u) + ........... -( x_N - u) = 0
                                  u = (x_1 + x_2 + .... + x_N) / N
                         显然,就是算术平均值
                   — 同理,对sigma求导数
                            -N/sigma + 累加1到N[ .....    ]/sigma^3 = 0
                        最终有 sigma  = sqrt(  ((x_1 - u)^2 + (x_2 - u)^2 + ... (x_n - u)^2)) / N )

   
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值