Neural network state estimation for full quantum state tomography笔记

本文提出了一种基于神经网络的量子态层析估计模型,旨在加速全量子态层析的数据处理。通过将状态估计转化为监督学习任务,使用神经网络映射测量结果至密度矩阵,减少了计算复杂度至O(d^3)。训练集由信息超完备的泡利测量生成,模型在无噪声的理想测量结果上训练,以应对实际含有噪声的测量数据。这种方法相比传统最大似然估计等算法更快,适用于更大规模的量子系统。
摘要由CSDN通过智能技术生成

一.引言
量子态层析(估计)(Quantum state tomography,QST)通过量子测量重建量子系统的量子态,在各种量子信息处理任务(包括量子计算和量子通信)中,对量子器件的验证和基准测试起着重要作用。QST一般由两个过程组成:系统上的量子测量(数据收集)和从测量结果中估计量子状态(数据分析)。这两个过程都很重要。
到目前为止,已经提出了许多减少测量需求的方法。例如,一些人使用压缩感知来重建低秩的量子态];有的采用高效的层析成像方法重建矩阵积态;有的利用置换不变层析成像来获得置换下的常数信息;与理想状态相比,可以直接测定制备态的纯度和纯度。一些学者利用生成网络(受限玻尔兹曼机)构造了多体量子系统的变分表示,并利用有限的测量结果重构了某些量子系统的多体波函数。然而,它们中的大多数要么只能在特定的先决条件下实现,例如先验知识或假设,要么具有显著的限制。
全量子态层析成像(FQST)是迄今为止最通用的层析成像方案,它是指利用信息完整的测量重建量子态,而且不需要事先对系统有任何了解。要重建d维密度矩阵,需要确定(d^2-1)独立的参数,这意味着至少需要
(d^2-1)
测量。当d随系统大小(即量子位元的数目)呈指数增长时,测量值和计算复杂度也呈指数增长。除了测量量的增加外,现有的状态重建算法也非常耗时。例如,极大似然估计(MLE)的8量子位重建需要10个小时的测量,而数据处理需要一周的时间。贝叶斯平均估计(BME)是另一种常用的状态估计算法,它具有唯一的状态估计,但计算复杂度较大。由于可控量子系统中的量子位数量仍在快速增长,因此迫切需要更有效的状态重构方法。最近,提出了一种有效的MLE算法,用于加性高斯噪声下的状态重构,该算法的复杂度为O(d^4),尽
管不是一般的。此外,最近提出的线性回归估计(LRE)算法的计算复杂度为O(d^4),其加速版本的计算复杂度为
O(d^log2 12)。
机器学习(ML)技术已被证明是识别、分类和字符化复杂数据集的强大工具。除了计算机科学应用之外,ML最近还被用来解决物理问题。例如,它在各种凝聚态主题中的应用是一个新兴和快速发展的领域。同时,由于其从高维数据中提取信息的内在能力,其在量子多体系统中的应用,如发现相变、、解决量子杂质问题和表示多体量子态等也受到了极大的关注。
本文提出一种有效的状态估计模型——神经网络估计(NNE),利用机器学习技术进一步加速全量子态层析成像的数据处理。计算复杂度为O(d3),比LRE方法更快。我们将状态估计转化为回归过程,并应用一个基于神经网络结构的参数化函数将测量结果映射到估计的量子状态。采用标准监督学习程序对参数化函数的参数进行更新,并进行了数值试验,验证了模型的准确性和可扩展性。
二.模型结构
首先,我们构造了一个高度参数化的函数,其中包括一个神经网络结构,以提高其表达能力,将包含测量结果的高维向量映射到待重构状态的密度矩阵。然后,我们在一个大的训练集上,通过基于误差反向传播的参数优化来训练我们的模型。训练集中的每个训练实例都是由一个测量结果向量(输入特征)和一个相应的密度矩阵(标签)组成的对。网络经过良好的训练,即所有参数设置正确后,可以通过一个单一的前馈过程,从新的实验测量结果中有效地得到量子态的估计密度矩阵。详细内容将在以下各节中介绍。
A.神经网络结构
如图1所示,从特征测量向量到输出密度矩阵的前馈映射包括两个步骤。
在这里插入图片描述
步骤(i)通过四层全连接神经网络[33]进行前馈计算,从特征向量 映射出矩阵T。例如,如果选择泡利测量,第一层将有6^n
个神经元。选择两个隐层的神经元数目随量子位元数目n的增加而线性增加。在实际应用中,我们在每个隐层设置了200个神经元用于一个量子位元系统,而对于7个量子位元系统,神经元的数量增加到800个。矩阵T以向量形式从输出层输出(为了方便起见,我们将T的实部和虚部分开)。由于密度矩阵为2^n*
2^n,
输出层有2*4^n个神经元。所有的神经元都被sigmoid型函数激活。(不同于一些深度学习任务,如图像识别,其中relu激活函数更可取,我们发现sigmoid函数在我们的任务更有效)。
步骤(ii)
由密度矩阵T表示的状态还不是物理的。表示量子态的密度矩阵应满足三个条件:厄米特条件、半正定条件和迹一条件。为了将T拉回到物理状态,我们设置
在这里插入图片描述

然后状态估计 满足所有三个物理约束条件。
B. 生成训练集
可以参考文章《Composed ensembles of random unitary matrices》
《Geometric quantum discord with Bures distance》
训练集由特征向量和训练目标组成。训练目标是一定分布下的一组密度矩阵,特征向量是给定测量集相应的理想测量结果。首先,我们生成一组训练目标。
量子系统的一般状态的集合通常用概率先验来描述。对于我们的训练目的,这个先验概率应该能够在整个状态空间中产生一个均匀分布。在我们的例子中,这种一致性是基于Bures距离定义的,并且根据Bures分布生成一个训练目标集合(密度矩阵)
然后我们可以为给定的测量集{M}生成与训练目标相对应的特征向量。对于每个 ,其对应的特征向量由理想的测量结果组成:
在这里插入图片描述
其中N为测量总次数。对于泡利测量,1-量子位系统的投影测量集为
在这里插入图片描述
在这里插入图片描述
对于多量子位系统,测量集{M}由式3中各元素间的张量积组成。
本文利用信息超完备的泡利测量集生成训练集,具有通用性和较高的估计精度。
C.训练模型-监督学习
由于我们利用ML中的神经网络已经将估计任务调整为标准监督学习任务,因此我们使用python中的tensorflow框架来运行我们的模型。我们用随机梯度下降算法训练网络。优化目标是在状态估计 (见图1)和训练集的目标矩阵 之间的最小二乘误差(LSE)。
在这里插入图片描述
我们选择AdamOptimizer作为优化器,以最小化代价函数,使其能够跳出局部最小[37]。典型的批batch大小是200。
由于在训练集上测量结果都是理想的无噪声,而在实际测量结果中含有噪声,会存在过拟合问题。为了解决这个问题,我们利用模拟实验生成的测试集。
在我们的训练过程中,我们使用N0=1000的测试集,这将在下一小节中详细描述。当测试集上的平均最小二乘误差(MLSE)收敛时,训练就终止了。
图2显示了2量子位系统的训练过程。
黄线为测试集上的最小均方误差,蓝虚线为训练集上的最小均方误差。当测试集上的最小均方误差停止减小时,训练即停止。
在这里插入图片描述
我们已经为量子系统训练了多达5个量子位元的网络。表1,显示了两个隐藏层中的神经元数量和我们为每个网络使用的训练示例的数量。这些参数是我们目前发现的获得最佳结果的参数。值得一提的是,训练样本越多,网络达到的最小二乘误差越小,即模型越精确。我们使用有限的训练样本,因为有限的计算资源和时间。下一节的估计结果基于使用这些训练参数训练的网络。
表1 具有不同数量量子位元的系统,两隐层神经元数目及网络训练实例数目
在这里插入图片描述
基于机器学习技术的状态估计模型。与以往减少层析中测量次数的努力不同,它侧重于加速全量子态层析的数据分析,这是一种最通用的方法,不需要预先了解量子系统的状态。由于我们的模型是基于监督学习的,一旦人工数据集的训练完成,新的状态重构不包括拟合或回归过程。单个状态重构过程的计算复杂度为O(d^3),比MLE快得多,是现有FQST全量子态层析算法中速度最快的(见表2)。由于有限的计算资源,我们目前只能训练最多5个量子位元的系统模型。
从时间复杂度的角度来看,我们的模型可以应用于更大的系统。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值