3.1 二分搜索
3.1.1 有序数组查值
例1:lower_bound
给定长度为n的单调不下降数列 a 0 , . . . , a n − 1 a_0,...,a_{n-1} a0,...,an−1和一个数k,求满足 a i ≥ k a_i \ge k ai≥k的最小i。不存在时输出n。
int n,k;
int a[NMAX];
void solve(){
int l=0, r=n-1, ans=n;
while( r >= l ){
int mid = (r+l)/2;
if(a[mid]>=k){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d\n",ans);
}
3.1.2 判断可行解
例1:切绳子 POJ1064
有N条绳子,长度分别为 L i L_i Li。切割出K条长度相同的绳子,每条绳子最多能多长?
1<=N, K<=10000, 1<=Li<=100000
【思路】二分每条绳子长度,找到能满足切出K条绳子的最大值。
【坑点】1、四年前看错的部分是米和厘米,绳子输入的单位是米,裁剪单位是厘米,因此保留两位小数。
2、输出:直接"%.2f"是一个四舍五入的状态,这个地方如果四舍五入是不对的,我们要取小。然后trick是:floor(ans*100)/100
3、break条件:我一直WA是因为单纯的写了while(r-l>=eps),eps即便取到1e-10也没办法保证这个精确性。
为了循环足够多次,可以设定循环次数。
另一种学到的题解是,把整个单位化成厘米,然后二分也是找整数解。相当有道理。
#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const double eps = 1e-10;
const int INF = 1e5;
const int NMAX = 10010;
int N,K,lmin;
double cab[NMAX];
int cal(double ll){
int tot = 0;
for(int i=0;i<N;i++){
tot+=(int)(cab[i]/ll);
}
return tot;
}
void solve(){
double ans = 0;
double l=0, r=INF;
// while(r>=l+eps){
for(int i=0; i<100; i++){
double md = (l+r)/2;
if(cal(md)>=K){
ans=md;
l=md;
}
else{
r=md;
}
}
printf("%.2f\n",floor(ans*100)/100);
}
int main(){
lmin = INF;
scanf("%d%d",&N,&K);
for(int i=0;i<N;i++){
scanf("%lf",&cab[i]);
}
solve();
return 0;
}
3.1.3 最大化最小值
例题1:牛距离最远 POJ2456
有N间牛舍排列在一条直线上,第i号牛舍在xi的位置。
M头牛对小屋不满意,会互相攻击。因此决定要把每头牛都放在离其他牛尽可能远的距离。
目标是最大化最近的两头牛之间的距离。
2<=N<=1e5, 2<=M<=N, 0<=xi<=1e9
【思路】二分两头牛之间的最小距离,并且能满足塞下M头牛。
#include <cstdio>
#include <algorithm>
using namespace std;
const int NMAX=100100;
int N,C;
int x[NMAX];
bool cando(int a){
int last=0;
for(int i=1; i<C; i++){
int pp = last+1;
while( pp<N && x[pp]-x[last]<a ){
pp++;
}
if(pp==N) return false;
last = pp;
}
return true;
}
int main(){
scanf("%d%d",&N,&C);
for(int i=0; i<N; i++){
scanf("%d",&x[i]);
}
sort(x,x+N);
int l=0, r=x[N-1]-x[0];
int ans=0;
while(r>=l){
int md = (r+l)/2;
if(cando(md)){
ans = md;
l=md+1;
}
else{
r=md-1;
}
}
printf("%d\n",ans);
return 0;
}
3.1.4 最大化平均值
例题:有n个物品重量和价值分别为wi和vi。选k个物品要求单位重量的价值最大。
【思路】由于分数的特殊性。按照单位重量从大到小排序,然后选前k是不行的。
使用二分法。定义目标函数=满足目标单位重量价值的物品有大于等于k个。
∑ v i ∑ w i > = x \frac{\sum v_i}{\sum w_i}>=x ∑wi∑vi>=x 转化为 ∑ v i − x ∑ w i ≥ 0 \sum{v_i} - x \sum w_i \ge 0 ∑vi−x∑wi≥0
即找到 ∑ ( v i − x ∗ w i ) ≥ 0 \sum(v_i-x*w_i)\ge 0 ∑(vi−x∗wi)≥0, v i − x ∗ w i v_i-x*w_i vi−x∗wi的前k个和不小于0