【挑战程序设计竞赛】- 2.6 数论基础 (扩展欧几里得、素数筛法、快速幂)

2.6 数论基础 (扩展欧几里得、素数筛法、快速幂)

2.6.1辗转相除法

1. 求最大公约数

例题1:给定平面上两个格点P1(x1,y1), P2(x2,y2)。线段P1P2上,(除了P1 P2)有几个格点?(格点即整数点)
− e 9 < = x 1 , x 2 , y 1 , y 2 < = e 9 -e^9<=x_1,x_2,y_1,y_2<=e^9 e9<=x1,x2,y1,y2<=e9

【思路】:把(x1,y1)挪到(0,0),P2(x2-x1,y2-y1),实际上是找gcd(|x2-x1|,|y2-y1|)-1。
这里-1是因为算的是中间端点不是线段,线段是不用-1。

int gcd(int a, int b){
	return b==0?a:gcd(b,a%b);
}

辗转相除法复杂度: O ( l o g ( m a x ( a , b ) ) ) O(log(max(a,b))) O(log(max(a,b)))

2. 扩展欧几里得

例题2:双六

有向前向后无限延伸的格子(…-3、-2、-1、0、1、2、3…)。
每个格子上都是整数。
其中0号格子是起点,1号格子是终点。
骰子上只有a \ -a \ b \ -b 四个数,问四个数各投几次能到达终点?无解输出1。
1<=a,b<=1e9

【思路】:实质是求解ax+by = 1。

若gcd(a,b)!=1, 设gcd(a,b)=t, a = k1t, b=k2t,那么ax+by = (ak1+bk2)t = 1显然不可能。

因此gcd(a,b) = 1。化简为 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

若已经求得

b x + ( a % b ) y = g c d ( a , b ) bx+(a\%b)y=gcd(a,b) bx+(a%b)y=gcd(a,b)

又因为 a % b = a − ( a / b ) ∗ b a\%b=a-(a/b)*b a%b=a(a/b)b,因此

b x + ( a − ( a / b ) ∗ b ) y = g c d ( a , b ) bx + (a-(a/b)*b)y = gcd(a,b) bx+(a(a/b)b)y=gcd(a,b)

化简为: a y + b ( x − a / b ∗ y ) = g c d ( a , b ) ay+b(x-a/b*y)=gcd(a,b) ay+b(xa/by)=gcd(a,b)

因此当前新的x’和y‘为: x ′ = y x'=y x=y, y ′ = x − ( a / b ) y = x − ( a / b ) x ′ y'=x-(a/b)y=x-(a/b)x' y=x(a/b)y=x(a/b)x

int exgcd(int a, int b, int& x, int& y){
    int d = a;
    if(b){
        d = exgcd(b, a%b, y, x);
        y -= (a/b)*x;
    }
    else{
        x=1, y=0;
    }
    return d;
}

2.6.2 素数

1. 素数判定

例题1 判定n是不是素数,1 <= n <=1e9

【思路】素数,检查2到 n \sqrt{n} n 是否有约束

复杂度,每次 O ( n ) O(\sqrt{n}) O(n )

【容易bug的地方】
判断1的特殊情况!
因数分解要把另一个也加上
整数分解要把因子除尽。

2. 埃氏筛法

例题2 请问n以内有几个素数。1 <= n <=1e6

【思路】将2-n所有整数写下来,把所有2的倍数划去、3的倍数划去…

当前没画掉的最小数是素数,总是划去素数的倍数。

int prime[NMAX]; //存素数
bool isprime[NMAX];
int calprime(int n){
	int p = 0;
	for(int i=2; i<=n; i++) isprime[i]=true;
    for(int i=2; i<=n; i++){
        if(isprime[i]){
            prime[p++]=i;
            for(int j=2*i; j<=n; j+=i) isprime[i]=false;
        }
    }
    return p;//素数个数
}

3. 区间筛法(埃氏筛法+素数判定)

例题3 给定整数a和b,问区间 [a,b) 内有多少素数。
1<=a<b<=1e12, b-a<=1e6

【思路】b(及小于b)的最大质因子必然小于等于 b \sqrt{b} b

做2~ b \sqrt b b 的质数表,将a~b范围内的倍数筛去。

typedef long long ll;
const int nmax=1e6+30;
bool isprime_ab[NMAX]; //0 ~ b-a
bool isprime[NMAX]; //2 ~ sqrt(b)
int calprime(ll a, ll b){
	int p = 0;
	for(ll i=2; i*i<=b; i++) 
        isprime[i]=true;
    for(ll i=2; i*i<=b; i++){
        if(isprime[i]){
			//筛2~sqrt(b)
            for(ll j=2*i; j*j<=b; j+=i) 
                isprime[i]=false;
            ll st = max(2LL, (a+i-1)/i)*i;
            for(ll j = st; j<=b; j+=i)
                isprime_ab[j-a]=false;
        }
    }
    int cnt = 0;
    for(ll i=a; i<=b; i++){
        if(isprime_ab[i-a]) cnt++;
    }
    return cnt;//素数个数
}

2.6.3 取模

为了不让其溢出整数(2147483647)。

a是负数是a%m也是负数,记得用a%m+m 给他纠正到0~m-1。

加减乘都非常自由,但是除法不好模。

2.6.4 快速幂计算

例题1: uva10006 carmichael number

C数:对于任意的1<x<n,都有x^n=x(mod)n成立的合数。

对于给定的n,判断其是否是C数。2<n<=65000

【思路】朴素计算要 O ( n 2 ) O(n^2) O(n2)。快速幂。

x n = ( x 2 ) 2 x^n=(x^2)^2 xn=(x2)2,想到把n化成若干2的幂次和。

x n = x 2 k 1 x 2 k 2 x 2 k 3 . . . x^n=x^{2^{k_1}}x^{2^{k_2}}x^{2^{k_3}}... xn=x2k1x2k2x2k3...

因此依次求2的幂次即可。

x 22 = x 2 4 ∗ x 2 2 ∗ x 2 1 x^{22}=x^{2^4}*x^{2^2}*x^{2^1} x22=x24x22x21,也是因为22写成二进制be like:10110

快速幂板子:

typedef long long ll;
ll ppow(ll x, ll n, ll mod){
    ll res = 1;
    while(n){
        if(n & 1) res = res*x % mod;
        x = x*x%mod;
        n>>=1;
    }
    return res;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值