题目说明:
给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。
示例 1 :
输入:nums = [1,1,1], k = 2
输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。
说明 :
数组的长度为 [1, 20,000]。
数组中元素的范围是 [-1000, 1000] ,且整数 k 的范围是 [-1e7, 1e7]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/subarray-sum-equals-k
代码:
方法1是hash 方法2是暴力枚举
//hash
public static int subarraySum(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
int sum = 0, res = 0;
map.put(0, 1);
for(int i = 0; i < nums.length; i++){
sum += nums[i];
if(map.containsKey(sum - k))
res += map.get(sum - k);
map.put(sum, map.getOrDefault(sum, 0) + 1);
}
return res;
}
//暴力枚举
public static int subarraySumDemo(int[] nums, int k){
int res = 0;
for(int i = 0; i < nums.length; i++) {
int sum = 0;
if(nums[i] == k)
res++;
sum += nums[i];
for(int j = i + 1; j < nums.length; j++){
sum += nums[j];
if(sum == k)
res++;
}
}
return res;
}
思路
-
暴力枚举
一般最简单的想法就是暴力枚举,两个for循环,挨着计算每一个子数组的和 判断是否等于K。
这个办法刚开始我想这是否能够优化,就是提前跳出循环:
① 当前nums[i]已经大于K了,跳出循环
②当前sum + nums[j] > k 跳出循环,不用再计算后面
但是这些都必须建立在前提为数组元素全部非负,而题目给出的数组是没有限定非负的,所以就没办法实现。 -
hash
map存储数组nums挨个的sum,和sum出现的个数
数组前n项的和为 ** sum(n) = nums[0] + …… + nums[n];**
数组第n项到第j项的和为 ** sum(n~j) = nums[n] + …… + nums[j]; **
其实计算前n项的和是否等于K,比较容易。 难的就是如何不忽略那种 sum(n~j) == k 的情况
那么就需要去计算sum(n~j)
sum(n~j) = sum(j) - sum(n)
假设 sum(n~j) == k
那么式子就可以变换为:
k = sum(j) - sum(n);
sum(j) - k = sum(n)
也就是说 map里面 判断当前的sum - k 的值是否已经存在于map中,如果存在即代表 sum(n~j) == k
此时计数器 +1
不得不说 这个方法确实不错 只需要O(n)的时间复杂度,属实牛逼嗷
刚开始没想出来 算法这方面还是得加强,有些时候还是要想着数学的方法