题目:Fast Point Spread Function Modeling with Deep
日期:2018JCAP
主要内容:
FPS建模,天体图像
摘要:
建立大视场观测的点扩展函数(PSF)模型对于许多天体物理应用和包括弱引力透镜效应在内的宇宙学探测都是至关重要的。PSF模糊了任何被记录的物体的图像,因此在从天文图像推断星系的属性时需要加以考虑。在宇宙切变的情况下,PSF是系统误差的主要来源之一,必须谨慎对待,以避免宇宙学参数的偏差。近年来,在蒙特卡罗控制环(MCCL)框架内,正演模拟方法已被开发出来校准剪切测量值。这些方法通常需要模拟大量的宽视场图像,因此,模拟需要非常快,同时在关键特性(如PSF模式)中具有真实的特性。因此,这类正向建模方法需要一个非常灵活的PSF模型,该模型能够快速评估,并且其参数能够从调查数据中可靠地估计出来。
提出了一种基于快速深度学习的自由参数估计方法的PSF模型。我们在公共可用的SDSS数据上演示了我们的方法。我们通过主成分分析提取SDSS样本最重要的特征。接下来,我们基于对固定基础概要文件的扰动构建模型,以确保它能够捕获这些特性。然后我们训练一个卷积神经网络来从PSF的噪声图像中估计模型的自由参数。
这使我们能够渲染每个恒星的模型图像,并将其与SDSS恒星进行比较,以评估我们的方法的性能。我们发现,我们的方法能够在像素级精确地再现SDSS PSF,由于模型评估和参数估计的速度,这为将我们的方法合并到MCCL框架中提供了良好的前景。