简介
参考大佬解题解题代码来理解着题的,
[大佬传送门](https://blog.csdn.net/weixin_43872728/article/details/104858125)
题目描述
牛牛有x件材料a和y件材料b,用2件材料a和3件材料b可以合成一件装备,用4件材料a和1件材料b也可以合成一件装备。牛牛想要最大化合成的装备的数量,于是牛牛找来了你帮忙
输入描述
输入包含t组数据
第一行一个整数t
接下来t行每行两个整数x,y
输出描述
每组数据输出一行一个整数表示答案。
示例
5
4 8
7 6
8 10
100 4555
45465 24124
输出
2
2
3
50
13917
备注
1<=t<=10000
1<=x,y<=1e9
通过代码
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
int x, y;
int get(int m)
{
return m + min((x - 4 * m) / 2, (y - m)/3);
}
int main()
{
int n;
cin >> n;
while (n--)
{
cin >> x >> y;
int l = 0, r = min(x / 4, y ), m1, m2;
while (l < r)
{
m1 = l + (r - l) / 3;
m2 = r - (r - l) / 3;
if (get(m1) > get(m2)) r = m2 - 1;
else l = m1 + 1;
}
cout << get(l) << endl;
}
}
本题思路
1:既然使用到三分法,那就是求在哪一个点使得合成的装备取到最大。
2:首先,我们可以使用A方法时,取得的装备最大是n个,然后在进行3分搜索法,进行0-n 进行取值。然后我们去左中点和右中点,去判断两点所得的装备那个大一点。
(装备的值等于,m + min((x - 4 * m) / 2, (y - m)/3))自己理解一下,很好理解。
然后如果左点的所得装备数量大,那么极值点就靠近左点,然后然右边等于等于右中点-1,以此类推,类似与二分查找法。
收获
二分法的讲解:二分法
总结
在解题时,思路还是过于狭窄,题目量还是不多,希望自己接下来,都进行复习,和认真思考,回顾一下高数的知识点,进行连贯。这道题,如果有解题思路的话就会很简单,没有思路的话,就像高数题,俺不认识他。希望自己不断加油。