高等数学关于切线,法线,切平面,法平面的详细解释

高等数学关于切线,法线,切平面,法平面的详细解释

简介

本文章主要对高数下几个切线和切平面的总结

文章内容

  • 平面曲线的切线和法线
  • 空间曲线的切线和法平面
  • 曲面的切平面和法线

平面曲线的切线和法线

我们知道平面的切线的斜率也就是f(x) 的在该点的导数,那法线也就是f(x)导数的负分之一。也就是切线的斜率x法线的斜率等于-1;

图解
在这里插入图片描述

空间曲线的切线和法平面

  • 参数方程情况

空间曲线我们知道,x,y,z 都极限接近某一点的斜率,所以参数方程表示的空间曲线所求的切线斜率比较好求。

在这里插入图片描述

然后切线和法平面就可以表示为,如下:

在这里插入图片描述
在这里插入图片描述

  • 如果是空间曲线方程

例如 x = x ,y = y(x) , z = z(x); 那求切线和法平面比较简单

在这里插入图片描述

  • 空间曲面的交线类型的空间曲线

这种情况还是对某一点偏导,举个下面的例子,下面例子怎么解,大家可以去看一下线性代数的克莱姆法则怎么解,挺简单,其实利用线性代数还可以解其他的,我还没复习到那里。

在这里插入图片描述
在这里插入图片描述
总结,我自己遇到的疑问

引用百度问答大佬的话:
因为空间曲面的切平面上,过切点的直线即切线有无数条,方向矢量各不相同,所以求之无意义。
反过来,一条曲线对应的切平面也有无数个,它们法矢量也不相同,所以求之也无意义

曲面的切平面和法线

其解释如下,主要用到法线和切线垂直,利用线性代数的正交。如下解释
在这里插入图片描述

总结

我也只是对这些常见的进行重新整理一下,还是要自己多做题才能够明白偷,希望自己2021考研上岸。

在Matlab中,可以通过曲线的导数来求曲线上某点的切线法线。 1. 切线:曲线上某点的切线是与曲线在该点处相的一条直线。我们可以通过此点的斜率曲线上的坐标来确定切线方程。为了求得切线的斜率,我们需要计算曲线在该点的导数。在Matlab中,可以使用diff函数计算曲线的导数。 假设某个曲线的方程为y = f(x),那么求解切线可以按照以下步骤进行: - 选择一个点(x0, y0)在曲线上; - 使用diff函数求得f(x)的导数,记为dy/dx; - 在点(x0, y0)处,切线的斜率等于dy/dx在该点处的值; - 可以使用y = mx + c的通用直线方程,其中m为斜率,c为常数; - 通过将坐标(x0, y0)代入通用直线方程中,计算出c的值; - 得到切线方程为y = mx + c。 2. 法线:曲线上某点的法线是与曲线在该点处垂直的一条直线。法线的斜率是切线斜率的相反数的倒数。因为法线切线垂直,所以斜率的乘积等于-1。我们可以使用切线的斜率来求得法线的斜率,然后再利用这个斜率曲线上的坐标来确定法线方程。 假设已得到某点的切线的斜率为m,那么求解法线可以按照以下步骤进行: - 切线的斜率为m; - 法线的斜率为-1/m; - 可以使用y = mx + c的通用直线方程,其中m为斜率,c为常数; - 通过将坐标(x0, y0)代入通用直线方程中,计算出c的值; - 得到法线方程为y = (-1/m)x + c。 使用这两个步骤可以求得曲线上某个点的切线法线方程
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值