装备合成--------------------------思维(三分法)

在这里插入图片描述
在这里插入图片描述
解析:

假设我们制作第一种m件,那么第二种只能合成 min((x-2m)/4,(y-3m))
那么总的就是 m+min((x-2m)/4,(y-3m))
但是本题枚举m会tle

所以想到三分枚举m,三分法前提是一定具有单调性
在这里插入图片描述
引用了大佬的图

所以这是一个先增后减的图,可以求极大值满足题意。
我们直接套这个图的三分板子即可
存在lm<rm 则极大值在[lm,right] 反之在 [left,rm];

#include<bits/stdc++.h>
using namespace std;
int t,x,y;
int val(int i)
{
	return i+min((x-2*i)/4,(y-3*i));
}
int main()
{
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d %d",&x,&y);
		int l=0,r=min(x/2,y/3);
		while(r-l>10)
		{
			int lmid=l+(r-l)/3;
			int rmid=r-(r-l)/3;
			if(val(lmid)<val(rmid)) l=lmid;
			else r=rmid;
		}
		int ans=0;
		for(int i=l;i<=r;i++)
		{
			ans=max(ans,i+min((x-2*i)/4,(y-3*i)));
		}
		cout<<ans<<endl;
	 } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值