曲线切线与曲面切面的求法

曲线切线与法平面

显式形式:参数方程

\left\{\begin{matrix} x=x(t)\\ y=y(t)\\ z=z(t) \end{matrix}\right. \right.

则切线方向向量为(x'(t0),y'(t0),z'(t0))

隐式形式

\left\{\begin{matrix} F(x,y,z)=0\\ G(x,y,z)=0 \end{matrix}\right.

则切线的方向向量为

 

法平面

已知曲线在(x0,y0,z0)的切线的方向向量为(xt,yt,zt)

则法平面方程为xt(x-x0)+yt(y-y0)+zt(z-z0)=0

曲面切面与法线

隐式形式

S:F(x,y,z)=0

则曲面在(x0,y0,z0)处的法向量为(Fx',Fy',Fz')

切平面方程为Fx'(x-x0)+Fy'(y-y0)+Fz'(z-z0)=0

显式形式

z=f(x,y)

将z=f(x,y)化为F(x,y,z)=f(x,y)-z

则法向量为(fx',fy',-1)

切平面方程为fx'(x-x0)+fy'(y-y0)-(z-z0)=0

法线

设曲面在(x0,y0,z0)处的法向量为(Fx,Fy,Fz)

则法线方程为

\frac{x-x_{0}}{Fx}=\frac{y-y_{0}}{Fy}=\frac{z-z_{0}}{Fz}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值