JAVA 集合

本文深入解析Java集合框架,包括List、Set、Map的主要实现类,如ArrayList、LinkedList、HashSet、TreeSet、HashMap等,探讨其数据结构、核心方法及线程安全性。特别关注ArrayList和LinkedList的源码分析,以及HashMap在JDK1.8前后处理哈希冲突的不同策略。
摘要由CSDN通过智能技术生成

 

接口继承关系和实现

集合类存放于 Java.util 包中,主要有 3 种:set(集)、list(列表包含 Queue)和 map(映射)。

1. Collection:Collection 是集合 List、Set、Queue 的最基本的接口。

2. Iterator:迭代器,可以通过迭代器遍历集合中的数据

3. Map:是映射表的基础接口

List

Java 的 List 是非常常用的数据类型。List 是有序的 Collection。Java List 一共三个实现类: 分别是 ArrayList、Vector 和 LinkedList。

ArrayList(数组)

ArrayList 是最常用的 List 实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要将已经有数组的数据复制到新的存储空间中当从 ArrayList 的中间位置插入或者删除元素时,需要对数组进行复制、移动、代价比较高。因此,它适合随机查找和遍历,不适合插入和删除

Vector(数组实现、线程同步)

Vector 与 ArrayList 一样,也是通过数组实现的,不同的是它支持线程的同步,即某一时刻只有一个线程能够写 Vector,避免多线程同时写而引起的不一致性,但实现同步需要很高的花费,因此,访问它比访问 ArrayList 慢。

LinkList(链表)

LinkedList 是用链表结构存储数据的,很适合数据的动态插入和删除,随机访问和遍历速度比较慢。另外,他还提供了 List 接口中没有定义的方法,专门用于操作表头和表尾元素,可以当作堆栈、队列和双向队列使用。

 

Set

Set 注重独一无二的性质,该体系集合用于存储无序(存入和取出的顺序不一定相同)元素,值不能重复。对象的相等性本质是对象 hashCode 值(java 是依据对象的内存地址计算出的此序号)判断的,如果想要让两个不同的对象视为相等的,就必须覆盖 Object 的 hashCode 方法和 equals 方法。

HashSetHash 表)

哈希表边存放的是哈希值。HashSet 存储元素的顺序并不是按照存入时的顺序(和 List 显然不同) 而是按照哈希值来存的所以取数据也是按照哈希值取得。元素的哈希值是通过元素的hashcode 方法来获取的, HashSet 首先判断两个元素的哈希值,如果哈希值一样,接着会比较equals 方法 如果 equls 结果为 true ,HashSet 就视为同一个元素。如果 equals 为 false 就不是同一个元素。

哈希值相同 equals 为 false 的元素是怎么存储呢,就是在同样的哈希值下顺延(可以认为哈希值相同的元素放在一个哈希桶中)。也就是哈希一样的存一列。如图 1 表示 hashCode 值不相同的情况;图 2 表示 hashCode 值相同,但 equals 不相同的情况。

HashSet 通过 hashCode 值来确定元素在内存中的位置。一个 hashCode 位置上可以存放多个元素

TreeSet(二叉树)

1. TreeSet()是使用二叉树的原理对新 add()的对象按照指定的顺序排序(升序、降序),每增加一个对象都会进行排序,将对象插入的二叉树指定的位置。

2. Integer 和 String 对象都可以进行默认的 TreeSet 排序,而自定义类的对象是不可以的,自己定义的类必须实现 Comparable 接口,并且覆写相应的 compareTo()函数,才可以正常使用。

3. 在覆写 compare()函数时,要返回相应的值才能使 TreeSet 按照一定的规则来排序

4. 比较此对象与指定对象的顺序。如果该对象小于、等于或大于指定对象,则分别返回负整数、零或正整数。

LinkHashSetHashSet+LinkedHashMap

对于 LinkedHashSet 而言,它继承与 HashSet、又基于 LinkedHashMap 来实现的。LinkedHashSet 底层使用 LinkedHashMap 来保存所有元素,它继承与 HashSet,其所有的方法操作上又与 HashSet 相同,因此 LinkedHashSet 的实现上非常简单,只提供了四个构造方法,并通过传递一个标识参数,调用父类的构造器,底层构造一个 LinkedHashMap 来实现,在相关操作上与父类 HashSet 的操作相同,直接调用父类 HashSet 的方法即可。

 

Map

HashMap(数组+链表+红黑树)

HashMap 根据键的 hashCode 值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap 最多只允许一条记录的键为 null,允许多条记录的值为 null。HashMap 非线程安全,即任一时刻可以有多个线程同时写 HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections 的 synchronizedMap 方法使 HashMap 具有线程安全的能力,或者使用 ConcurrentHashMap。我们用下面这张图来介绍HashMap 的结构。

 

 

ArrayList源码分析

增删改查

添加元素时,首先判断索引是否合法,然后检测是否需要扩容,最后使用System.arraycopy方法来完成数组的复制。

这个方法无非就是使用System.arraycopy()方法将C集合(先准换为数组)里面的数据复制到elementData数组中。这里就稍微介绍下System.arraycopy(),因为下面还将大量用到该方法

该方法的原型为:

public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)。

它的根本目的就是进行数组元素的复制。即从指定源数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。

将源数组src从srcPos位置开始复制到dest数组中,复制长度为length,数据从dest的destPos位置开始粘贴。

//        public void add(int index, E element) {
//            rangeCheckForAdd(index);
//
//            ensureCapacityInternal(size + 1);  // Increments modCount!!
//            System.arraycopy(elementData, index, elementData, index + 1,
//                    size - index);
//            elementData[index] = element;
//            size++;
//        }
//

删除元素时,同样判断索引是否和法,删除的方式是把被删除元素右边的元素左移,方法同样是使用System.arraycopy进行拷贝。

//        public E remove(int index) {
//            rangeCheck(index);
//
//            modCount++;
//            E oldValue = elementData(index);
//
//            int numMoved = size - index - 1;
//            if (numMoved > 0)
//                System.arraycopy(elementData, index+1, elementData, index,
//                        numMoved);
//            elementData[--size] = null; // clear to let GC do its work
//
//            return oldValue;
//        }

 ArrayList提供一个清空数组的办法,方法是将所有元素置为null,这样就可以让GC自动回收掉没有被引用的元素了。

//
//        /**
//         * Removes all of the elements from this list.  The list will
//         * be empty after this call returns.
//         */
//        public void clear() {
//            modCount++;
//
//            // clear to let GC do its work
//            for (int i = 0; i < size; i++)
//                elementData[i] = null;
//
//            size = 0;
//        }

修改元素时,只需要检查下标即可进行修改操作。

//        public E set(int index, E element) {
//            rangeCheck(index);
//
//            E oldValue = elementData(index);
//            elementData[index] = element;
//            return oldValue;
//        }
//
//        public E get(int index) {
//            rangeCheck(index);
//
//            return elementData(index);
//        }
//

 上述方法都使用了rangeCheck方法,其实就是简单地检查下标而已。

//        private void rangeCheck(int index) {
//            if (index >= size)
//                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
//        }

modCount 

//        protected transient int modCount = 0;

由以上代码可以看出,在一个迭代器初始的时候会赋予它调用这个迭代器的对象的mCount,如何在迭代器遍历的过程中,一旦发现这个对象的mcount和迭代器中存储的mcount不一样那就抛异常

好的,下面是这个的完整解释
Fail-Fast 机制
我们知道 java.util.ArrayList 不是线程安全的,ArrayList,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。

这一策略在源码中的实现是通过 modCount 域,modCount 顾名思义就是修改次数,对ArrayList 内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的 expectedModCount。

在迭代过程中,判断 modCount 跟 expectedModCount 是否相等,如果不相等就表示已经有其他线程修改了 ArrayList。

所以在这里和大家建议,当大家遍历那些非线程安全的数据结构时,尽量使用迭代器

初始容量和扩容方式

初始容量是10,下面是扩容方法。
首先先取

//        private static final int DEFAULT_CAPACITY = 10;

扩容发生在add元素时,传入当前元素容量加一
   public boolean add(E e) {
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    elementData[size++] = e;
    return true;
}


这里给出初始化时的数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

这说明:如果数组还是初始数组,那么最小的扩容大小就是size+1和初始容量中较大的一个,初始容量为10。
因为addall方法也会调用该函数,所以此时需要做判断。
private void ensureCapacityInternal(int minCapacity) {
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }

    ensureExplicitCapacity(minCapacity);
}

//开始精确地扩容
private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    // overflow-conscious code
        如果此时扩容容量大于数组长度吗,执行grow,否则不执行。
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

真正执行扩容的方法grow

扩容方式是让新容量等于旧容量的1.5被。

当新容量大于最大数组容量时,执行大数扩容

//        private void grow(int minCapacity) {
//            // overflow-conscious code
//            int oldCapacity = elementData.length;
//            int newCapacity = oldCapacity + (oldCapacity >> 1);
//            if (newCapacity - minCapacity < 0)
//                newCapacity = minCapacity;
//            if (newCapacity - MAX_ARRAY_SIZE > 0)
//                newCapacity = hugeCapacity(minCapacity);
//            // minCapacity is usually close to size, so this is a win:
//            elementData = Arrays.copyOf(elementData, newCapacity);//new
//        }

 当新容量大于最大数组长度,有两种情况,一种是溢出,抛异常,一种是没溢出,返回整数的最大值。

这里有一个疑问,为什么每次扩容处理会是1.5倍,而不是2.5、3、4倍呢?通过google查找,发现1.5倍的扩容是最好的倍数。因为一次性扩容太大(例如2.5倍)可能会浪费更多的内存(1.5倍最多浪费33%,而2.5被最多会浪费60%,3.5倍则会浪费71%……)。但是一次性扩容太小,需要多次对数组重新分配内存,对性能消耗比较严重。所以1.5倍刚刚好,既能满足性能需求,也不会造成很大的内存消耗。

处理这个ensureCapacity()这个扩容数组外,ArrayList还给我们提供了将底层数组的容量调整为当前列表保存的实际元素的大小的功能。它可以通过trimToSize()方法来实现。该方法可以最小化ArrayList实例的存储量。

public void trimToSize() {
    modCount++;
    int oldCapacity = elementData.length;
    if (size < oldCapacity) {
        elementData = Arrays.copyOf(elementData, size);
    }
}

线程安全

ArrayList是线程不安全的。在其迭代器iteator中,如果有多线程操作导致modcount改变,会执行fastfail。抛出异常。

final void checkForComodification() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
    }

 

LinkedList

LinkedList源码分析

private static class Node<E> {
        E item;//节点值
        Node<E> next;//后继节点
        Node<E> prev;//前驱节点

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

构造方法

空构造方法:

   public LinkedList() {
    }

用已有的集合创建链表的构造方法:

    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

add方法

add(E e) 方法:将元素添加到链表尾部

public boolean add(E e) {
        linkLast(e);//这里就只调用了这一个方法
        return true;
    }
   /**
     * 链接使e作为最后一个元素。
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;//新建节点
        if (l == null)
            first = newNode;
        else
            l.next = newNode;//指向后继元素也就是指向下一个元素
        size++;
        modCount++;
    }

add(int index,E e):在指定位置添加元素

public void add(int index, E element) {
        checkPositionIndex(index); //检查索引是否处于[0-size]之间

        if (index == size)//添加在链表尾部
            linkLast(element);
        else//添加在链表中间
            linkBefore(element, node(index));
    }

linkBefore方法需要给定两个参数,一个插入节点的值,一个指定的node,所以我们又调用了Node(index)去找到index对应的node

addFirst(E e): 将元素添加到链表头部

 public void addFirst(E e) {
        linkFirst(e);
    }
private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f);//新建节点,以头节点为后继节点
        first = newNode;
        //如果链表为空,last节点也指向该节点
        if (f == null)
            last = newNode;
        //否则,将头节点的前驱指针指向新节点,也就是指向前一个元素
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

addLast(E e): 将元素添加到链表尾部,与 add(E e) 方法一样

public void addLast(E e) {
        linkLast(e);
    }

根据位置取数据的方法

get(int index): 根据指定索引返回数据

public E get(int index) {
        //检查index范围是否在size之内
        checkElementIndex(index);
        //调用Node(index)去找到index对应的node然后返回它的值
        return node(index).item;
    }

获取头节点(index=0)数据方法:

public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }
public E element() {
        return getFirst();
    }
public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
     }

区别: getFirst(),element(),peek(),peekFirst() 这四个获取头结点方法的区别在于对链表为空时的处理,是抛出异常还是返回null,其中getFirst() 和element() 方法将会在链表为空时,抛出异常

element()方法的内部就是使用getFirst()实现的。它们会在链表为空时,抛出NoSuchElementException
获取尾节点(index=-1)数据方法:

 public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }
 public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }

两者区别: getLast() 方法在链表为空时,会抛出NoSuchElementException,而peekLast() 则不会,只是会返回 null

根据对象得到索引的方法

int indexOf(Object o): 从头遍历找

public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            //从头遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            //从头遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

int lastIndexOf(Object o): 从尾遍历找

public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            //从尾遍历
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            //从尾遍历
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

检查链表是否包含某对象的方法:

contains(Object o): 检查对象o是否存在于链表中

 public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

删除方法

remove() ,removeFirst(),pop(): 删除头节点

public E pop() {
        return removeFirst();
    }
public E remove() {
        return removeFirst();
    }
public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

removeLast(),pollLast(): 删除尾节点

public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }
public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

区别: removeLast()在链表为空时将抛出NoSuchElementException,而pollLast()方法返回null。

remove(Object o): 删除指定元素

public boolean remove(Object o) {
        //如果删除对象为null
        if (o == null) {
            //从头开始遍历
            for (Node<E> x = first; x != null; x = x.next) {
                //找到元素
                if (x.item == null) {
                   //从链表中移除找到的元素
                    unlink(x);
                    return true;
                }
            }
        } else {
            //从头开始遍历
            for (Node<E> x = first; x != null; x = x.next) {
                //找到元素
                if (o.equals(x.item)) {
                    //从链表中移除找到的元素
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

当删除指定对象时,只需调用remove(Object o)即可,不过该方法一次只会删除一个匹配的对象,如果删除了匹配对象,返回true,否则false。

unlink(Node x) 方法:

E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;//得到后继节点
        final Node<E> prev = x.prev;//得到前驱节点

        //删除前驱指针
        if (prev == null) {
            first = next;//如果删除的节点是头节点,令头节点指向该节点的后继节点
        } else {
            prev.next = next;//将前驱节点的后继节点指向后继节点
            x.prev = null;
        }

        //删除后继指针
        if (next == null) {
            last = prev;//如果删除的节点是尾节点,令尾节点指向该节点的前驱节点
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

remove(int index):删除指定位置的元素

public E remove(int index) {
        //检查index范围
        checkElementIndex(index);
        //将节点删除
        return unlink(node(index));
    }

 

HashMap

HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一。

JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树,以减少搜索时间。

底层数据结构分析

JDK1.8之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

扰动函数:高16为不变,低16位于高16位异或

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

    static final int hash(Object key) {
      int h;
      // key.hashCode():返回散列值也就是hashcode
      // ^ :按位异或
      // >>>:无符号右移,忽略符号位,空位都以0补齐
      return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 高16为不变,低16位于高16位异或
  }

对比一下 JDK1.7的 HashMap 的 hash 方法源码.

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

 

JDK1.8之后

相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

 

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;    
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30; 
    // 默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8; 
    // 当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table; 
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;   
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    // 加载因子
    final float loadFactor;
}
  • loadFactor加载因子

    loadFactor加载因子是控制数组存放数据的疏密程度,loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。

    loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值

    给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。

  • threshold

    threshold = capacity * loadFactor当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准

  • Node节点类源码:

// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
       final K key;//键
       V value;//值
       // 指向下一个节点
       Node<K,V> next;
       Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        // 重写hashCode()方法
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        // 重写 equals() 方法
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

树节点类源码:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父
        TreeNode<K,V> left;    // 左
        TreeNode<K,V> right;   // 右
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;           // 判断颜色
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
        // 返回根节点
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
       }

HashMap源码分析

构造方法

HashMap 中有四个构造方法,它们分别如下:

public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
     }
     
     // 包含另一个“Map”的构造函数
     public HashMap(Map<? extends K, ? extends V> m) {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);//下面会分析到这个方法
     }
     
     // 指定“容量大小”的构造函数
     public HashMap(int initialCapacity) {
         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     }
     
     // 指定“容量大小”和“加载因子”的构造函数
     public HashMap(int initialCapacity, float loadFactor) {
         if (initialCapacity < 0)
             throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         if (loadFactor <= 0 || Float.isNaN(loadFactor))
             throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
         this.loadFactor = loadFactor;
         this.threshold = tableSizeFor(initialCapacity);
     }

put方法

HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。

对putVal方法添加元素的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素就和要插入的key比较,如果key相同就直接覆盖,如果key不相同,就判断p是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { 
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
} 

这个最经典的在于 我再每次遍历中把这个节点找出来了 有一个引用节点来得到,所有的都结束后再赋值

我们再来对比一下 JDK1.7 put方法的代码

对于put方法的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的key比较,如果key相同就直接覆盖,不同就采用头插法插入元素。

这个手写的思路:给你一个key 计算hash吧 计算完hash得去桶里面找位置吧,找到第一个位置就可以比较了吧,不对的话for循环往下遍历吧,找到对应相等的节点我把vlaue覆盖了就行,返回结果。如果找了一圈发现没有,也就是啥都没返回,那么就是插入新节点即可。

public V put(K key, V value)
    if (table == EMPTY_TABLE) { 
    inflateTable(threshold); 
}  
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue; 
        }
    }

    modCount++;
    addEntry(hash, key, value, i);  // 再插入
    return null;
}

resize方法

进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else { 
        // signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { 
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

JDK 提供的并发容器总结

JDK提供的这些容器大部分在 java.util.concurrent 包中。

  • ConcurrentHashMap: 线程安全的HashMap
  • CopyOnWriteArrayList: 线程安全的List,在读多写少的场合性能非常好,远远好于Vector.
  • ConcurrentLinkedQueue: 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列。
  • BlockingQueue: 这是一个接口,JDK内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。
  • ConcurrentSkipListMap: 跳表的实现。这是一个Map,使用跳表的数据结构进行快速查找。

 

ConcurrentHashMap

Segment

ConcurrentHashMap 和 HashMap 思路是差不多的,但是因为它支持并发操作,所以要复杂一些。整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁。注意,行文中,我很多地方用了“槽”来代表一个segment。

线程安全(Segment 继承 ReentrantLock 加锁)

简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

并行度(默认 16

concurrencyLevel:并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。再具体到每个 Segment 内部,其实 每个 Segment 很像之前介绍的 HashMap,不过它要保证线程安全,所以处理起来要麻烦些。

get方法

无需加锁,因为是读的过程,get方法将读的过程用到的共享变量都定义为volatile类型的,比如统计当前segment大小的count字段和用于存储值的hashEntry的value,保障可见性;

put方法  必须枷锁,同上面线程安全,只是扩不扩容的问题;

 

ConcurrentHashMap取消了Segment分段锁,采用CAS和synchronized来保证并发安全。数据结构跟HashMap1.8的结构类似,数组+链表/红黑二叉树。Java 8在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为O(N))转换为红黑树(寻址时间复杂度为O(log(N)))

synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。

 

CopyOnWriteArrayList   应用到了ReentrantLock

public class CopyOnWriteArrayList<E>
extends Object
implements List<E>, RandomAccess, Cloneable, Serializable

 

CopyOnWriteArrayList 是如何做到的?

CopyOnWriteArrayList 类的所有可变操作(add,set等等)都是通过创建底层数组的新副本来实现的。当 List 需要被修改的时候,我并不修改原有内容,而是对原有数据进行一次复制,将修改的内容写入副本。写完之后,再将修改完的副本替换原来的数据,这样就可以保证写操作不会影响读操作了。

从 CopyOnWriteArrayList 的名字就能看出CopyOnWriteArrayList 是满足CopyOnWrite 的ArrayList,所谓CopyOnWrite 也就是说:在计算机,如果你想要对一块内存进行修改时,我们不在原有内存块中进行写操作,而是将内存拷贝一份,在新的内存中进行写操作,写完之后呢,就将指向原来内存指针指向新的内存,原来的内存就可以被回收掉了。

CopyOnWriteArrayList 写入操作的实现

CopyOnWriteArrayList 写入操作 add() 方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。

 /**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return {@code true} (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        final ReentrantLock lock = this.lock;
        lock.lock();//加锁
        try {
            Object[] elements = getArray();
            int len = elements.length;
            Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝新数组
            newElements[len] = e;
            setArray(newElements);
            return true;
        } finally {
            lock.unlock();//释放锁
        }
    }

 CopyOnWriteArrayList 读取操作的实现

读取操作没有任何同步控制和锁操作,理由就是内部数组 array 不会发生修改,只会被另外一个 array 替换,因此可以保证数据安全。

/** The array, accessed only via getArray/setArray. */
    private transient volatile Object[] array;
    public E get(int index) {
        return get(getArray(), index);
    }
    @SuppressWarnings("unchecked")
    private E get(Object[] a, int index) {
        return (E) a[index];
    }
    final Object[] getArray() {
        return array;
    }

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值