超参数网络搜索(GridSearchCV)

GridSearchCV是Python中用于超参数优化的工具,它通过系统遍历多个参数组合,利用交叉验证找到最佳参数。该过程可以并行化以节省计算时间,最后返回最佳参数、得分和相关评价指标。
摘要由CSDN通过智能技术生成

超参数网络搜索

由于各个新模型在执行交叉验证的过程中间是相互独立的,所以我们可以充分利用多核处理器(Multicore processor)甚至是分布式的计算资源来从事并行搜索,节省运算时间。

# 导入20类新闻文本抓取器
from sklearn.datasets import fetch_20newsgroups
import numpy as np
news = fetch_20newsgroups(subset='all')
print(news.DESCR)
.. _20newsgroups_dataset:

The 20 newsgroups text dataset
------------------------------

The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.

This module contains two loaders. The first one,
:func:`sklearn.datasets.fetch_20newsgroups`,
returns a list of the raw texts that can be fed to text feature
extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`
with custom parameters so as to extract feature vectors.
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.

**Data Set Characteristics:**

    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality               1
    Features                  text
    =================   ==========

Usage
~~~~~

The :func:`sklearn.datasets.fetch_20newsgroups` function is a data
fetching / caching functions that downloads the data archive from
the original `20 newsgroups website`_, extracts the archive contents
in the ``~/scikit_learn_data/20news_home`` folder and calls the
:func:`sklearn.datasets.load_files` on either the training or
testing set folder, or both of them::

  >>> from sklearn.datasets import fetch_20newsgroups
  >>> newsgroups_train = fetch_20newsgroups(subset='train')

  >>> from pprint import pprint
  >>> pprint(list(newsgroups_train.target_names))
  ['alt.atheism',
   'comp.graphics',
   'comp.os.ms-windows.misc',
   'comp.sys.ibm.pc.hardware',
   'comp.sys.mac.hardware',
   'comp.windows.x',
   'misc.forsale',
   'rec.autos',
   'rec.motorcycles',
   'rec.sport.baseball',
   'rec.sport.hockey',
   'sci.crypt',
   'sci.electronics',
   'sci.med',
   'sci.space',
   'soc.religion.christian',
   'talk.politics.guns',
   'talk.politics.mideast',
   'talk.politics.misc',
   'talk.religion.misc']

The real data lies in the ``filenames`` and ``target`` attributes. The target
attribute is the integer index of the category::

  >>> newsgroups_train.filenames.shape
  (11314,)
  >>> newsgroups_train.target.shape
  (11314,)
  >>> newsgroups_train.target[:10]
  array([ 7,  4,  4,  1, 14, 16, 13,  3,  2,  4])

It is possible to load only a sub-selection of the categories by passing the
list of the categories to load to the
:func:`sklearn.datasets.fetch_20newsgroups` function::

  >>> cats = ['alt.atheism', 'sci.space']
  >>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

  &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值