目录
参考文档
https://blog.csdn.net/xiaoliu598906167/article/details/82218525
https://blog.csdn.net/fouling/article/details/98631144
https://blog.csdn.net/supersub000/article/details/80100016
1.需求
将mysql数据库中的上百万数据存入redis中存入的格式为hashMap的形式
即,(hash路径,key, obj)其中的obj为map 封装一条记录信息
并且这些数据在用的时候可以取得到。
难点,普通通过循环hset的方式比较慢,一万条数据需要6秒左右,一百万需要10分钟左右
优化方案:redisTemplate的管道api executePipelined()
注意,仍需要将数据进行分段向redis中存入(不然被卡死),比如可以分段从数据库取然后分段存,
但是最好是一下子取出来,再分段存入,本案例是分段取分段存。
2.基本配置
<!--使用的是如下的依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
基本配置类(必须)
package com.example.studyspringboot.studyboot.utils.stuRedis;
import com.alibaba.fastjson.support.spring.GenericFastJsonRedisSerializer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
@Configuration
public class RedisConfig {
@SuppressWarnings("rawtypes")
@Autowired
private RedisTemplate redisTemplate;
/**
* 解决redis插入中文乱码
* @return
*/
@SuppressWarnings({ "unchecked", "rawtypes" })
@Bean
public RedisTemplate redisTemplateInit() {
//设置序列化Key的实例化对象
redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setHashKeySerializer(new StringRedisSerializer());
//设置序列化Value的实例化对象
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.setHashValueSerializer(new GenericFastJsonRedisSerializer());
return redisTemplate;
}
}
配置文件
#MYSQL链接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/redistest?useUnicode=true&characterEncoding=utf-8&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=lps123
# AOP
# spring.aop.auto=true
# 默认使用cglib动态代理
# 强制使用jdk代理(不要这样做)
#spring.aop.proxy-target-class=false
#mybatis配置
mybatis.mapper-locations = classpath:/mapper/*.xml
#mybatis.type-aliases-package=com.customerNoPlatform.entity
#redis配置
#Redis服务器地址
spring.redis.host=127.0.0.1
#Redis服务器连接端口
spring.redis.port=6379
#Redis数据库索引(默认为0)
spring.redis.database=0
#连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=50
#连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=3000
#连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=20
#连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=2
#连接超时时间(毫秒)
spring.redis.timeout=5000
3.核心代码
package com.example.studyspringboot.studyboot.utils.stuRedis;
import com.alibaba.fastjson.JSON;
import com.example.studyspringboot.studyboot.dao.UserDao;
import org.apache.catalina.Pipeline;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import javax.annotation.Resource;
import java.util.List;
import java.util.Map;
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest
public class Main {
@Autowired
private RedisTemplate redisTemplate;
@Autowired
private UserDao userDao;
@Autowired RedisUtil redisUtil;
/**
* 读取缓存数据
*/
@Test
public void get() {
// redisUtils.get("908687_name_2726||908687_sex_2726||908687_hobby_2726908687_height_2726");
Map<String,Object> value = (Map<String,Object>)redisUtil.hget("nbs:hello:leaf","908687_name_2726||908687_sex_2726||908687_hobby_2726908687_height_2726");
System.out.println(JSON.toJSONString(value));
System.out.println(value.get("name"));
}
@Test
public void method2() {
CustomersToRedis("nbs:hello:leaf",0);
}
/**
* @Author lps
* @Description //TODO
* @Date 2020-07-25 15:21:44 星期六
* @Param [path, stepSize] pathhash值的路径,stepSize 步长多少数据查一次
* @return boolean
**/
public boolean CustomersToRedis(String path,int stepSize) {
long zero = System.currentTimeMillis();
//数据总量
int total = userDao.getCount();
if(total==0){
return false;
}
stepSize=stepSize==0?100000:stepSize;
//分步
int step =(total%stepSize)==0?(total/stepSize):(total/stepSize+1);
long startTime;//开始时间
long selectTime;//查询花费时间
long endTime;//结束时间
long saveTime;//存入redis花费时间
long dis;
for(int j = 1;j<=step;j++){
System.out.println("######第"+j+"次操作######");
startTime= System.currentTimeMillis();
//查出stepSize条数据
List<Map<String,Object>> res=userDao.getLimitUser((j-1)*stepSize,stepSize);
selectTime = System.currentTimeMillis();
System.out.println("查询花费时间:"+(selectTime-startTime)+"ms");
//将这些数据存入redis
handleSave(path, res);
saveTime = System.currentTimeMillis();
System.out.println("存入redis话费时间:"+(saveTime-selectTime)+"ms");
endTime= System.currentTimeMillis();
dis= endTime-startTime;
System.out.println("每十万条数据花费时间:"+dis+"ms");
System.out.println();//换行
}
long last = System.currentTimeMillis();
System.out.println("总共花费时间"+(last-zero)+"ms");
return true;
}
//RedisTemplate使用PipeLine
//使用管道存储
public void handleSave(String path,List<Map<String, Object>> maps) {
List resultList = redisTemplate.executePipelined(new RedisCallback<String>() {
@Override
public String doInRedis(RedisConnection connection) throws DataAccessException {
connection.openPipeline();
String tempKey="";
for(Map<String,Object> map:maps){
tempKey=map.get("name")+"||"+map.get("sex")+"||"+map.get("hobby")+map.get("height");
connection.hSet(path.getBytes(),tempKey.getBytes(),redisTemplate.getValueSerializer().serialize(map));
}
return null;
}
});
System.out.println("长度:"+resultList.size());
}
}
4.dao
package com.example.studyspringboot.studyboot.dao;
import org.apache.ibatis.annotations.Param;
import org.springframework.stereotype.Repository;
import java.util.List;
import java.util.Map;
@Repository
public interface UserDao {
//分页查询
List<Map<String,Object>> getLimitUser(@Param("st") int st, @Param("ed") int ed);
//总条数
Integer getCount();
}
5.mapper/*.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd" >
<mapper namespace="com.example.studyspringboot.studyboot.dao.UserDao">
<select id="getLimitUser" resultType="java.util.Map">
select * from user limit #{st},#{ed};
</select>
<select id="getCount" resultType="java.lang.Integer">
select COUNT(*)cnt from user;
</select>
</mapper>
部分结果展示
redis存储结果
后台打印输出
可以看出查询花费由于是本机时间还不算长,如果是远程连接时间可能要长得多。
每次存10万,100万的数据大概需要56秒,如果不算链接查询的时间可能40秒就可以了。
6.数据表
7.工具类
package com.example.studyspringboot.studyboot.utils.stuRedis;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import javax.annotation.Resource;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@Component
@Slf4j
public class RedisUtil {
//锁名称
public static final String LOCK_PREFIX = "redis_lock";
//加锁失效时间,毫秒
public static final int LOCK_EXPIRE = 300; // ms
@Resource
private RedisTemplate<String, Object> redisTemplate;
public void setRedisTemplate(RedisTemplate<String, Object> redisTemplate) {
this.redisTemplate = redisTemplate;
}
//=============================common============================
/**
* 指定缓存失效时间
*
* @param key 键
* @param time 时间(秒)
* @return
*/
public boolean expire(String key, long time) {
try {
if (time > 0) {
redisTemplate.expire(key, time, TimeUnit.SECONDS);
}
log.info("指定redis缓存失效时间成功,key:{},time:{}",key,time);
return true;
} catch (Exception e) {
e.printStackTrace();
log.info("指定redis缓存失效时间失败,key:{},time:{}",key,time);
return false;
}
}
/**
* 根据key 获取过期时间
*
* @param key 键 不能为null
* @return 时间(秒) 返回0代表为永久有效
*/
public long getExpire(String key) {
long time=redisTemplate.getExpire(key, TimeUnit.SECONDS);
log.info("根据key获取redis缓存失效时间,key:{},time:{}",key,time);
return time;
}
/**
* 判断key是否存在
*
* @param key 键
* @return true 存在 false不存在
*/
public boolean hasKey(String key) {
try {
boolean flag=redisTemplate.hasKey(key);
log.info("判断redis是否包含key,key:{},return:{}",key,flag);
return flag;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除缓存
*
* @param key 可以传一个值 或多个
*/
@SuppressWarnings("unchecked")
public void del(String... key) {
if (key != null && key.length > 0) {
if (key.length == 1) {
boolean flag=redisTemplate.delete(key[0]);
log.info("从redis删除key,key:{},return:{}",key,flag);
} else {
long count=redisTemplate.delete(CollectionUtils.arrayToList(key));
log.info("从redis删除key,key:{},return:{}",key,count);
}
}
}
//============================String=============================
/**
* 普通缓存获取
*
* @param key 键
* @return 值
*/
public Object get(String key) {
if(key==null) {
log.info("从redis获取key,key:{},return:{}",key,null);
return null;
}else {
Object object=redisTemplate.opsForValue().get(key);
log.info("从redis获取key,key:{},return:{}",key,object);
return object;
}
}
/**
* 普通缓存放入
*
* @param key 键
* @param value 值
* @return true成功 false失败
*/
public boolean set(String key, Object value) {
try {
redisTemplate.opsForValue().set(key, value);
log.info("保存键值到redis成功,key:{},value:{}",key,value);
return true;
} catch (Exception e) {
e.printStackTrace();
log.info("保存键值到redis失败,key:{},value:{}",key,value);
return false;
}
}
/**
* 普通缓存放入并设置时间
*
* @param key 键
* @param value 值
* @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期
* @return true成功 false 失败
*/
public boolean set(String key, Object value, long time) {
try {
if (time > 0) {
redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
log.info("保存键值到redis成功并设定失效时间,key:{},value:{},time:{},",key,value,time);
} else {
set(key, value);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
//================================Map=================================
/**
* HashGet
*
* @param key 键 不能为null
* @param item 项 不能为null
* @return 值
*/
public Object hget(String key, String item) {
return redisTemplate.opsForHash().get(key, item);
}
/**
* 获取hashKey对应的所有键值
*
* @param key 键
* @return 对应的多个键值
*/
public Map<Object, Object> hmget(String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* HashSet
*
* @param key 键
* @param map 对应多个键值
* @return true 成功 false 失败
*/
public boolean hmset(String key, Map<String, Object> map) {
try {
redisTemplate.opsForHash().putAll(key, map);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* HashSet 并设置时间
*
* @param key 键
* @param map 对应多个键值
* @param time 时间(秒)
* @return true成功 false失败
*/
public boolean hmset(String key, Map<String, Object> map, long time) {
try {
redisTemplate.opsForHash().putAll(key, map);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value) {
try {
redisTemplate.opsForHash().put(key, item, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 向一张hash表中放入数据,如果不存在将创建
*
* @param key 键
* @param item 项
* @param value 值
* @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
* @return true 成功 false失败
*/
public boolean hset(String key, String item, Object value, long time) {
try {
redisTemplate.opsForHash().put(key, item, value);
if (time > 0) {
expire(key, time);
}
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 删除hash表中的值
*
* @param key 键 不能为null
* @param item 项 可以使多个 不能为null
*/
public void hdel(String key, Object... item) {
redisTemplate.opsForHash().delete(key, item);
}
/**
* 判断hash表中是否有该项的值
*
* @param key 键 不能为null
* @param item 项 不能为null
* @return true 存在 false不存在
*/
public boolean hHasKey(String key, String item) {
return redisTemplate.opsForHash().hasKey(key, item);
}
//============================set=============================
/**
* 根据key获取Set中的所有值
*
* @param key 键
* @return
*/
public Set<Object> sGet(String key) {
try {
return redisTemplate.opsForSet().members(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 根据value从一个set中查询,是否存在
*
* @param key 键
* @param value 值
* @return true 存在 false不存在
*/
public boolean sHasKey(String key, Object value) {
try {
return redisTemplate.opsForSet().isMember(key, value);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将数据放入set缓存
*
* @param key 键
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSet(String key, Object... values) {
try {
return redisTemplate.opsForSet().add(key, values);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 将set数据放入缓存
*
* @param key 键
* @param time 时间(秒)
* @param values 值 可以是多个
* @return 成功个数
*/
public long sSetAndTime(String key, long time, Object... values) {
try {
Long count = redisTemplate.opsForSet().add(key, values);
if (time > 0) expire(key, time);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 获取set缓存的长度
*
* @param key 键
* @return
*/
public long sGetSetSize(String key) {
try {
return redisTemplate.opsForSet().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 移除值为value的
*
* @param key 键
* @param values 值 可以是多个
* @return 移除的个数
*/
public long setRemove(String key, Object... values) {
try {
Long count = redisTemplate.opsForSet().remove(key, values);
return count;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
//===============================list=================================
/**
* 获取list缓存的内容
*
* @param key 键
* @param start 开始
* @param end 结束 0 到 -1代表所有值
* @return
*/
public List<Object> lGet(String key, long start, long end) {
try {
return redisTemplate.opsForList().range(key, start, end);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 获取list缓存的长度
*
* @param key 键
* @return
*/
public long lGetListSize(String key) {
try {
return redisTemplate.opsForList().size(key);
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 通过索引 获取list中的值
*
* @param key 键
* @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
* @return
*/
public Object lGetIndex(String key, long index) {
try {
return redisTemplate.opsForList().index(key, index);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, Object value) {
try {
redisTemplate.opsForList().rightPush(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, Object value, long time) {
try {
redisTemplate.opsForList().rightPush(key, value);
if (time > 0) expire(key, time);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, List<Object> value) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 将list放入缓存
*
* @param key 键
* @param value 值
* @param time 时间(秒)
* @return
*/
public boolean lSet(String key, List<Object> value, long time) {
try {
redisTemplate.opsForList().rightPushAll(key, value);
if (time > 0) expire(key, time);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 根据索引修改list中的某条数据
*
* @param key 键
* @param index 索引
* @param value 值
* @return
*/
public boolean lUpdateIndex(String key, long index, Object value) {
try {
redisTemplate.opsForList().set(key, index, value);
return true;
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 移除N个值为value
*
* @param key 键
* @param count 移除多少个
* @param value 值
* @return 移除的个数
*/
public long lRemove(String key, long count, Object value) {
try {
Long remove = redisTemplate.opsForList().remove(key, count, value);
return remove;
} catch (Exception e) {
e.printStackTrace();
return 0;
}
}
/**
* 分布式锁
*
* @param key key值
* @return 是否获取到
*/
@SuppressWarnings("unchecked")
public boolean lock(String key){
String lock = LOCK_PREFIX + key;
return (Boolean) redisTemplate.execute((RedisCallback) connection -> {
long expireAt = System.currentTimeMillis() + LOCK_EXPIRE + 1;
Boolean acquire = connection.setNX(lock.getBytes(), String.valueOf(expireAt).getBytes());
if (acquire) {
return true;
} else {
byte[] value = connection.get(lock.getBytes());
if (Objects.nonNull(value) && value.length > 0) {
long expireTime = Long.parseLong(new String(value));
// 如果锁已经过期
if (expireTime < System.currentTimeMillis()) {
// 重新加锁,防止死锁
byte[] oldValue = connection.getSet(lock.getBytes(), String.valueOf(System.currentTimeMillis() + LOCK_EXPIRE + 1).getBytes());
return Long.parseLong(new String(oldValue)) < System.currentTimeMillis();
}
}
}
return false;
});
}
/**
* 删除锁
*
* @param key
*/
public void delete(String key) {
redisTemplate.delete(key);
}
}
8.一次查询,分批插入的效率对比
核心代码
@Test
public void method3() {
long startTime = System.currentTimeMillis();
int total = userDao.getCount();
List<Map<String,Object>> resList = userDao.getLimitUser(0,total);
long selectTime = System.currentTimeMillis();
System.out.println("查询数据花费时间:"+(selectTime-startTime)+"ms");
int len = resList.size();//实际数据总量(等于)total
int stepSize=100000;//步长为10万;
String path="nbs:hello:leaf";
int cnt=1;
long startRedisTime;
long endRedisTime= -System.currentTimeMillis();
List<Map<String,Object>> tempList = new ArrayList<>();
for(int i=0;i<len;i++){
tempList.add(resList.get(i));
if(i%stepSize==0&&i!=0){
System.out.println("第"+cnt+"次向redis中存入数据");
startRedisTime = System.currentTimeMillis();
handleSave(path,tempList);
tempList.clear();//清除内存
cnt++;
endRedisTime = System.currentTimeMillis();
System.out.println("存入redi花费时间:"+( endRedisTime-startRedisTime)+"ms");
}
}
//存在不能恰好整除的,需要额外处理
if(tempList.size()>0){
startRedisTime = System.currentTimeMillis();
handleSave(path,tempList);
endRedisTime = System.currentTimeMillis();
tempList.clear();//清除内存
System.out.println("存入redi花费时间:"+( endRedisTime-startRedisTime)+"ms");
}
System.out.println("总共花费的时间为:"+(endRedisTime-startTime)+"ms");
}
运行结果
查询数据花费时间:17521ms
第1次向redis中存入数据
长度:100001
存入redi花费时间:6233ms
第2次向redis中存入数据
长度:100000
存入redi花费时间:4107ms
第3次向redis中存入数据
长度:100000
存入redi花费时间:3579ms
第4次向redis中存入数据
长度:100000
存入redi花费时间:3406ms
第5次向redis中存入数据
长度:100000
存入redi花费时间:3384ms
第6次向redis中存入数据
长度:100000
存入redi花费时间:3468ms
第7次向redis中存入数据
长度:100000
存入redi花费时间:3382ms
第8次向redis中存入数据
长度:100000
存入redi花费时间:3359ms
第9次向redis中存入数据
长度:100000
存入redi花费时间:3742ms
第10次向redis中存入数据
长度:100000
存入redi花费时间:4318ms
长度:24
存入redi花费时间:6ms
总共花费的时间为:56535ms
可能由于都是本地连接,而不是远程连接。所以看不出来差别。
(1)值得注意的是大量数据如果一次性从数据库读到内存中,操作起来程序就会崩溃。比如一次性读入300万的数据就无法继续进行存储操作了。所以这个一次性读入,分批存的想法经过测试是行不通的。
(2)另外随着数据量的增加,即便是分批从数据库读,再分批写写入redis中,效率也越来也低。100万数据需要1分钟。
300百万数据却要4分钟。如果数据进一步增加的话可能就无法胜任了。具体如下: