蓝桥杯—算法提高 排队打水问题

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_40339331/article/details/80025063
问题描述

  有n个人排队到r个水龙头去打水,他们装满水桶的时间t1、t2………..tn为整数

且各不相等,应如何安排他们的打水顺序才能使他们总共花费的时间最少?

输入格式


  第一行n,r (n<=500,r<=75)

  第二行为n个人打水所用的时间Ti (Ti<=100);

输出格式

  最少的花费时间

样例输入

3 2

1 2 3

样例输出

7



数据规模和约定
  其中80%的数据保证n<=10


  思路:优先队列,花时间越少的先入队,对数组按所需时间从小到大排序,先把前r个入队,后面入队的并不是所需时间,而是等待时间+所需时间,具体实现就是每出队一个,就把这个人所需的时间(下一个入队的人的等待时间) + 下一个入队的人所需时间,就是总时间,这里的总时间也是下一个到这个水龙头下接水的人的等待时间。这里入队的方式很巧妙,并不是直接将元素入队,而是还要加上等待时间。


代码:

#include<bits/stdc++.h>


using namespace std;
const int maxn = 550;
struct node{
    int need;
    friend bool operator < (node a, node b){
        return a.need > b.need;
    }
};
priority_queue<node> q;
int n, r, ans;
node p[maxn];
bool cmp(node a, node b)
{
    return a.need < b.need;
}


void clear()
{
    while(!q.empty())
        q.pop();
}


int main()
{
    node a, b;
    while(scanf("%d%d", &n, &r) != EOF)
    {
        ans = 0;
        for(int i = 0;i < n;i++)
        {
            scanf("%d", &(p[i].need));
        }
        sort(p, p+n, cmp);
        for(int i = 0;i < r;i++)
        {
            ans += p[i].need;
            q.push(p[i]);
        }
        for(int i = r;i < n;i++)
        {
            a = q.top();
            b.need = a.need + p[i].need;
            ans += b.need;
            q.pop();
            q.push(b);
        }
        clear();
        cout << ans << endl;
    }
    return 0;
}



展开阅读全文

没有更多推荐了,返回首页