哈夫曼树原理、画法和具体例子

好久没画过哈夫曼树了,一做题发现全忘了。。特别记录一下,以一道题的详细解答过程为例。

1.哈夫曼压缩原理

当各种指令出现的频度不均等时,对出现频度最高的指令用最短的位数表示,出现频度较低的则用较长的位数表示,从而使指令的平均长度缩短。
构造哈夫曼树核心思想:最小概率合并。

2.构造哈夫曼树具体例子

0.2   0.17   0.06   0.08   0.11   0.08   0.05   0.08   0.13   0.03   0.01,一共11个数构造哈夫曼树。
(1)将所给数由小到大排序
在这里插入图片描述
(2)最小概率合并构造
选择最小的两个概率并以其为两个叶子结点构成二叉树,根是两个概率的和,在下一次比较的时候也要考虑这个数字。如果合并后的根节点是最小的两个概率之一,则该树向上生长,如果合并后的根节点不是最小的两个概率,则另起一树。

第一轮合并:0.01、0.03是最小的两个概率,合并
在这里插入图片描述
第二轮合并:第一轮合并的结果0.04、0.05是最小的两个概率,合并
在这里插入图片描述
第三轮合并:0.06、0.08是最小的两个概率,合并,并另起一树
在这里插入图片描述
第四轮合并:0.08、0.08是最小的两个概率,合并,并另起一树
在这里插入图片描述
第五轮合并:第二轮合并的结果0.09、0.11是最小的两个概率,合并
在这里插入图片描述
第六轮合并:0.13、第四轮合并的结果0.14是最小的两个概率,合并
在这里插入图片描述
第七轮合并:第四轮合并的结果0.16、0.17是最小的两个概率,合并
在这里插入图片描述

第八轮合并:第五轮合并的结果0.2、0.2是最小的两个概率,合并
在这里插入图片描述
第九轮合并:第六轮合并的结果0.27、第七轮合并的结果0.33是最小的两个概率,合并
在这里插入图片描述
第十轮合并:第八轮合并的结果0.4、第九轮合并的结果0.6是最小的两个概率,合并。结果为1,哈夫曼树构造完成
在这里插入图片描述
(1):一般来说,较小的结点为左孩子,但是不这么画也无所谓。
(2)在画的时候,用掉一个题目给的数据划去一个,显得清晰。

哈夫曼树和哈夫曼编码是一种有效的数据压缩算法,通过根据字符出现的频率构建树状结构,并将高频字符用较短的编码表示,低频字符用较长的编码表示,从而实现数据的压缩。 **哈夫曼树的基本原理:** 1. 给定一个字符集,统计每个字符在文本中出现的频率。 2. 创建叶节点,每个叶节点表示一个字符,并将字符频率作为叶节点的权值。 3. 选择两个权值最小的节点(可以是叶节点或非叶节点),创建一个新的父节点,其权值为这两个节点的权值之和。 4. 将新创建的父节点作为树的一个新节点,并将选中的两个节点作为其左右子节点。 5. 重复步骤3和4,直到所有节点都被连接到一棵树上,形成哈夫曼树。 **哈夫曼编码的基本原理:** 1. 在哈夫曼树中,从根节点开始遍历到每个叶节点,左边路径表示编码为0,右边路径表示编码为1。 2. 将每个字符的编码存储在一个编码表中,以便后续的编码和译码操作。 3. 对于给定的文本串,将每个字符根据编码表进行编码,将多个字符的编码串连接起来,形成编码后的文本串。 4. 对于给定的二进制串,从根节点开始遍历哈夫曼树,根据0或1的编码,沿着树的路径向下移动,直到达到叶节点,将叶节点对应的字符输出,并继续下一个编码。 通过哈夫曼编码,高频字符可以用较短的编码表示,低频字符可以用较长的编码表示,从而实现数据的压缩。在解码过程中,通过哈夫曼树的路径来确定每个编码对应的字符,从而还原原始数据。 希望这个简要的解释能够帮助你理解哈夫曼树和哈夫曼编码的基本原理。如果还有其他问题,请随时提问。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值