第五课---简单图片分类

下面介绍一下比较重要的模型

LeNet

输入一个3232的图片,通过Convolutions后,转为6个2828的形状(卷积核为655),下面做池化,把2828的图片转为1414的图片,然后再做卷积得到161010的图片,然后再做池化,得到1655的图片,最后做三个全连接层120维到84维到最后输出的10维。
在这里插入图片描述

AlexNet

彩色图片有3个通道,卷积神经网络在低层次做局部特征,在池化后会关注一些全局的特征。
在这里插入图片描述

VGG-16

在这里插入图片描述

ResNet

16年提出的模型,跟前面模型最大的区别是有一个特殊的连接,传入的特征先做卷积的变换,然后把变换后的特征和 原来的特征加到一起,作为下一级的特征,相当于在学习每一层发生多大的改变,而不是直接把这个值变成另外的值。使得学习更容易一些。
在这里插入图片描述

DenseNet

前面的若干层都可以连接到后面的若干层。每一层都有一个connection。

在这里插入图片描述

常用卷积神经网络架构

CNN模型的迁移学习

很多时候当我们需要训练一个新的图像分类任务,我们不会完全从一个随机的模型开始训练,而是利用_预训练_的模型来加速训练的过程。我们经常使用在ImageNet上的预训练模型。 这是一种transfer learning的方法。我们常用以下两种方法做迁移学习。
fine tuning: 从一个预训练模型开始,我们改变一些模型的架构,然后继续训练整个模型的参数。
feature extraction: 我们不再改变与训练模型的参数,而是只更新我们改变过的部分模型参数。我们之所以叫它feature extraction是因为我们把预训练的CNN模型当做一个特征提取模型,利用提取出来的特征做来完成我们的训练任务。

以下是构建和训练迁移学习模型的基本步骤:

初始化预训练模型
把最后一层的输出层改变成我们想要分的类别总数
定义一个optimizer来更新参数
模型训练
import numpy as np
import torchvision
from torchvision import datasets, transforms, models

import matplotlib.pyplot as plt
import time
import os
import copy
print("Torchvision Version: ",torchvision.__version__)

1、数据

我们会使用hymenoptera_data数据集,下载.

这个数据集包括两类图片, bees 和 ants, 这些数据都被处理成了可以使用ImageFolder <https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder>来读取的格式。我们只需要把data_dir设置成数据的根目录,然后把model_name设置成我们想要使用的与训练模型: :: [resnet, alexnet, vgg, squeezenet, densenet, inception]

其他的参数有:

num_classes表示数据集分类的类别数
batch_size
num_epochs
feature_extract表示我们训练的时候使用fine tuning还是feature extraction方法。如果feature_extract = False,整个模型都会被同时更新。如果feature_extract = True,只有模型的最后一层被更新。

2、查看数据,只是查看作用

# Top level data directory. Here we assume the format of the directory conforms 
#   to the ImageFolder structure
data_dir = "./hymenoptera_data"
# Batch size for training (change depending on how much memory you have)
batch_size = 32


#蜜蜂和蚂蚁数据集不会自动下载,请到群文件下载,并放在当前代码目录下
#os.path.join() 连接路径,相当于.../data_dir/train
all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"),
                                transforms.Compose([
        transforms.RandomResizedCrop(input_size), #把每张图片变成resnet需要输入的维度224
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
    ]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)
#训练数据分batch,变成tensor迭代器
img = next(iter(loader))[0] #这个img是一个batch的tensor
unloader = transforms.ToPILImage()  # reconvert into PIL image
#transforms:torchvision的子模块,常用的图像操作
#.ToPILImage() 把tensor或数组转换成图像
#详细转换过程可以看这个:https://blog.csdn.net/qq_37385726/article/details/81811466

plt.ion() #交互模式,默认是交互模式,可以不写
#详细了解看这个:https://blog.csdn.net/SZuoDao/article/details/52973621
#plt.ioff()

def imshow(tensor, title=None):
    image = tensor.cpu().clone()  # we clone the tensor to not do changes on it
    image = image.squeeze(0)      # remove the fake batch dimension 
    #这个.squeeze(0)看不懂,去掉也可以运行
    
    image = unloader(image) #tensor转换成图像
    plt.imshow(image)
    if title is not None:
        plt.title(title)
    plt.pause(1) # pause a bit so that plots are updated
    #可以去掉看看,只是延迟显示作用


plt.figure()
imshow(img[8], title='Image') 
imshow(img[9], title='Image')
imshow(img[10], title='Image')

在这里插入图片描述

3、把训练集和验证集分batch转换成迭代器

现在我们知道了模型输入的size,我们就可以把数据预处理成相应的格式。

data_transforms = {
    "train": transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    "val": transforms.Compose([
        transforms.Resize(input_size),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
#把迭代器存放到字典里作为value,key是train和val,后面调用key即可。

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
inputs, labels=next(iter(dataloaders_dict["train"])) #一个batch
print(inputs.shape)
print(labels)

在这里插入图片描述

for inputs, labels in dataloaders_dict["train"]:
    #print(inputs)
    #print(labels)
    print(labels.size()) #最后一个batch不足32

在这里插入图片描述

4、加载resnet模型并修改全连接层

# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"
# Number of classes in the dataset
num_classes = 2
# Number of epochs to train for 
num_epochs = 2
# Flag for feature extracting. When False, we finetune the whole model, 
#   when True we only update the reshaped layer params
feature_extract = True  #只更新修改的层
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False #提取的参数梯度不更新
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    if model_name == "resnet":
        model_ft = models.resnet18(pretrained=use_pretrained) 
        #如果True,从imagenet上返回预训练的模型和参数
        
        set_parameter_requires_grad(model_ft, feature_extract)#提取的参数梯度不更新
        #print(model_ft) 可以打印看下
        num_ftrs = model_ft.fc.in_features 
        #model_ft.fc是resnet的最后全连接层
        #(fc): Linear(in_features=512, out_features=1000, bias=True)
        #in_features 是全连接层的输入特征维度
        #print(num_ftrs)
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        #out_features=1000 改为 num_classes=2
        input_size = 224 #resnet18网络输入图片维度是224,resnet34,50,101,152也是
        
    return model_ft, input_size
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
print(model_ft)

5、查看需要更新的参数、定义优化器

next(iter(model_ft.named_parameters()))
len(next(iter(model_ft.named_parameters()))) #是元组,只有两个值
for name,param in model_ft.named_parameters():
    print(name) #看下都有哪些参数
# Send the model to GPU
model_ft = model_ft.to(device)

# Gather the parameters to be optimized/updated in this run. If we are
#  finetuning we will be updating all parameters. However, if we are 
#  doing feature extract method, we will only update the parameters
#  that we have just initialized, i.e. the parameters with requires_grad
#  is True.
params_to_update = model_ft.parameters() #需要更新的参数
print("Params to learn:")
if feature_extract:
    params_to_update = [] #需要更新的参数存放在此
    for name,param in model_ft.named_parameters(): 
        #model_ft.named_parameters()有啥看上面cell
        if param.requires_grad == True: 
#这里要知道全连接层之前的层param.requires_grad == Flase
#后面加的全连接层param.requires_grad == True
            params_to_update.append(param)
            print("\t",name)
else: #否则,所有的参数都会更新
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9) #定义优化器
# Setup the loss fxn
criterion = nn.CrossEntropyLoss() #定义损失函数

6、定义训练模型

#训练测试合一起了
def train_model(model, dataloaders, criterion, optimizer, num_epochs=5):
    since = time.time()
    val_acc_history = [] 
    best_model_wts = copy.deepcopy(model.state_dict())#深拷贝上面resnet模型参数
#.copy和.deepcopy区别看这个:https://blog.csdn.net/u011630575/article/details/78604226 
    best_acc = 0.
    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs-1))
        print("-"*10)
        
        for phase in ["train", "val"]:
            running_loss = 0.
            running_corrects = 0.
            if phase == "train":
                model.train()
            else: 
                model.eval()
            
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                
                with torch.autograd.set_grad_enabled(phase=="train"):
                    #torch.autograd.set_grad_enabled梯度管理器,可设置为打开或关闭
                    #phase=="train"是True和False,双等号要注意
                    outputs = model(inputs)
                    loss = criterion(outputs, labels)
                    
                _, preds = torch.max(outputs, 1)
                #返回每一行最大的数和索引,prds的位置是索引的位置
                #也可以preds = outputs.argmax(dim=1)
                if phase == "train":
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    
                running_loss += loss.item() * inputs.size(0) #交叉熵损失函数是平均过的
                running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
                #.view(-1)展开到一维,并自己计算
            
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects / len(dataloaders[phase].dataset)
       
            print("{} Loss: {} Acc: {}".format(phase, epoch_loss, epoch_acc))
            if phase == "val" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                #模型变好,就拷贝更新后的模型参数
                
            if phase == "val":
                val_acc_history.append(epoch_acc) #记录每个epoch验证集的准确率
            
        print()
    
    time_elapsed = time.time() - since
    print("Training compete in {}m {}s".format(time_elapsed // 60, time_elapsed % 60))
    print("Best val Acc: {}".format(best_acc))
    
    model.load_state_dict(best_model_wts) #把最新的参数复制到model中
    return model, val_acc_history

7、运行模型

# Train and evaluate
model_ft, ohist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs)
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, 
                                   num_classes, 
                                   feature_extract=False, #所有参数都训练
                                   use_pretrained=False)# 不要imagenet的参数
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), 
                              lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, 
                             dataloaders_dict, 
                             scratch_criterion, 
                             scratch_optimizer, 
                             num_epochs=num_epochs)

画图


# Plot the training curves of validation accuracy vs. number 
#  of training epochs for the transfer learning method and
#  the model trained from scratch
# ohist = []
# shist = []

# ohist = [h.cpu().numpy() for h in ohist]
# shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),scratch_hist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()

在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值