栈、队列、ArrayDeque源码分析、优先队列PriorityQueue源码分析

一、栈

1、什么是栈

栈是一种操作受限的线性表,后进者先出,先进者后出,只允许在一端插入和删除数据

当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,就应该首先栈这种数据结构

栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据

用数组实现的栈叫做顺序栈,用链表实现的栈叫做链式栈

2、栈的代码实现

1)、顺序栈
public class ArrayStack {
    private String[] items;//数组
    private int count;//栈中元素大小
    private int n;//栈的大小

    //初始化数组,申请一个大小为n的数组空间
    public ArrayStack(int n) {
        this.items = new String[n];
        this.n = n;
        this.count = 0;
    }

    //入栈操作
    public boolean push(String item) {
        if (count == n) return false;
        items[count] = item;
        count++;
        return true;
    }

    //出栈操作
    public String pop() {
        if (count == 0) return null;
        return items[--count];
    }
}
2)、链式栈
public class StackBasedOnLinkedList {
    private Node top = null;

    public void push(int value) {
        Node newNode = new Node(value, null);
        if (top == null) {
            top = newNode;
        } else {
            newNode.next = top;
            top = newNode;
        }
    }

    public int pop() {
        if (top == null) return -1;
        int value = top.data;
        top = top.next;
        return value;
    }

    private static class Node {
        private int data;
        private Node next;

        public Node(int data, Node next) {
            this.data = data;
            this.next = next;
        }

        public int getData() {
            return data;
        }
    }
}

3、Stack常用API

    public E push(E item)//将item压入栈并返回item
    
    public synchronized E pop()//弹出并返回栈顶的item,如果栈为空会抛出EmptyStackException
    
    public synchronized E peek()//返回栈顶的item,如果栈为空会抛出EmptyStackException
    
    public boolean empty()//栈是否为空

4、栈相关题目

1)、LeetCode20:有效的括号

给定一个只包括(){}[]的字符串,判断字符串是否有效

有效字符串需满足:

  • 左括号必须用相同类型的右括号闭合
  • 左括号必须以正确的顺序闭合
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        char[] charArray = s.toCharArray();
        for (char cChar : charArray) {
            if (stack.empty()) {
                stack.push(cChar);
            } else if (check(stack.peek(), cChar)) {
                stack.pop();
            } else {
                stack.push(cChar);
            }
        }
        return stack.empty();
    }

    public boolean check(char c1, char c2) {
        return (c1 == '(' && c2 == ')' || c1 == '[' && c2 == ']' || c1 == '{' && c2 == '}');
    }
2)、LeetCode155:最小栈

设计一个支持push,pop,top操作,并能在常数时间内检索到最小元素的栈

push(x) -- 将元素x推入栈中
pop() -- 删除栈顶的元素
top() -- 获取栈顶元素
getMin() -- 检索栈中的最小元素
public class MinStack {
    private Stack<Integer> stack;
    private Stack<Integer> minStack;

    public MinStack() {
        stack = new Stack<>();
        minStack = new Stack<>();
    }

    public void push(int x) {
        stack.push(x);
        if (minStack.isEmpty() || x < minStack.peek()) {
            minStack.push(x);
        } else {
            minStack.push(minStack.peek());
        }
    }

    public void pop() {
        stack.pop();
        minStack.pop();
    }

    public int top() {
        if (!stack.isEmpty()) {
            return stack.peek();
        }
        throw new RuntimeException("栈中元素为空,此操作非法");
    }

    public int getMin() {
        if (!minStack.isEmpty()) {
            return minStack.peek();
        }
        throw new RuntimeException("栈中元素为空,此操作非法");
    }
}
3)、LeetCode84:柱状图中最大的矩形

给定n个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为1

求在该柱状图中,能够勾勒出来的矩形的最大面积

在这里插入图片描述

以上是柱状图的示例,其中每个柱子的宽度为1,给定的高度为[2,1,5,6,2,3]

在这里插入图片描述

图中阴影部分为所能勾勒出的最大矩形面积,其面积为10个单位

示例:

输入: [2,1,5,6,2,3]
输出: 10

题解:

    public int largestRectangleArea(int[] heights) {
        Stack<Integer> stack = new Stack<>();
        stack.push(-1);
        int maxarea = 0;
        for (int i = 0; i < heights.length; ++i) {
            while (stack.peek() != -1 && heights[stack.peek()] >= heights[i])
                maxarea = Math.max(maxarea, heights[stack.pop()] * (i - stack.peek() - 1));
            stack.push(i);
        }
        while (stack.peek() != -1)
            maxarea = Math.max(maxarea, heights[stack.pop()] * (heights.length - stack.peek() - 1));
        return maxarea;
    }

二、队列

1、什么是队列

队列是一种操作受限的线性表,先进者先出,支持最基本的数据操作:入队,放一个数据到队列尾部;出队,从队列头部取一个元素

在这里插入图片描述

用数组实现的队列叫作顺序队列,用链表实现的队列叫作链式队列

1)、顺序队列

队列的实现需要两个指针:一个是head指针,指向队头;一个是tail指针,指向队尾

在这里插入图片描述

当我们调用两次出队操作,队列中head指针指向下标为2的位置,tail指针仍然指向下标为4的位置

在这里插入图片描述

随着不停地进行入队、出队操作,head和tail都会持续往后移动。当tail移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作

public class ArrayQueue {
    private String[] items;
    private int n = 0;//数组大小
    private int head = 0;//队头下标
    private int tail = 0;//队尾下标

    public ArrayQueue(int capacity) {
        items = new String[capacity];
        n = capacity;
    }

    //入队
    public boolean enqueue(String item) {
        if (tail == n) {
            if (head == 0) return false;
            for (int i = head; i < tail; ++i) {
                items[i - head] = items[i];
            }
            tail -= head;
            head = 0;
        }
        items[tail] = item;
        ++tail;
        return true;
    }

    //出队
    public String dequeue() {
        if (head == tail) return null;
        String ret = items[head];
        ++head;
        return ret;
    }
}

当队列的tail指针移动到数组的最右边后,如果有新的数据入队,我们可以将head到tail之间的数据,整体搬移到数组中0到tail-head的位置

在这里插入图片描述

2)、链式队列

基于链表的实现,同样需要两个指针:head指针和tail指针。它们分别指向链表的第一个结点和最后一个结点。入队时,tail->next=new_nodetail=tail->next;出队时,head=head->next

在这里插入图片描述

public class QueueBasedOnLinkedList {
    //队列的队首和队尾
    private Node head = null;
    private Node tail = null;

    //入队
    public void enqueue(String value) {
        Node newNode = new Node(value, null);
        if (tail == null) {
            head = newNode;
            tail = newNode;
        } else {
            tail.next = newNode;
            tail = tail.next;
        }
    }

    //出队
    public String dequeue() {
        if (head == null) return null;
        String value = head.getData();
        head = head.next;
        if (head == null) {
            tail = null;
        }
        return value;
    }

    private static class Node {
        private String data;
        private Node next;

        public Node(String data, Node next) {
            this.data = data;
            this.next = next;
        }

        public String getData() {
            return data;
        }
    }
}
3)、循环队列

循环队列就是把数组首尾相连扳成一个环

在这里插入图片描述

图中这个队列的大小为8,当前head=4,tail=7。当有一个新的元素a入队时,我们放入下标为7的位置。但这个时候,我们并不把tial更新为8,而是将其在环中后移一位,到下标为0的位置。当再有一个元素b入队时,我们将b放入下标为0的位置,然后tail加1更新为1。所以,在a,b依次入队之后,循环队列中的元素就变成了下面的样子:

在这里插入图片描述

通过这样的方法,成功避免了数据搬移操作

循环队列为空的判断条件是head==tail,队列满的条件(tail+1)%n==head

循环队列队列满的表达式推算过程:

在一般情况下,当队列满时,tail+1=head​。但是,有个特殊情况,就是tail=n-1,而​head=0时,这时候,tail+1=n,而head=0,所以用(tail+1)%n==n%n==0。而且,tail+1最大的情况就是n,不会大于n,这样,tail+1除了最大情况,不然怎么余n都是tail+1本身,也就是head

public class CircularQueue {
    private String[] items;
    private int n = 0;
    //head表示队头下标,tail表示队尾下标
    private int head = 0;
    private int tail = 0;

    //申请一个大小为capacity的数组
    public CircularQueue(int capacity) {
        items = new String[capacity];
        n = capacity;
    }

    //入队
    public boolean enqueue(String item) {
        //队列满了
        if ((tail + 1) % n == head) return false;
        items[tail] = item;
        tail = (tail + 1) % n;
        return true;
    }

    //出队
    public String dequeue() {
        //如果head==tail,表示队列为空
        if (head == tail) return null;
        String ret = items[head];
        head = (head + 1) % n;
        return ret;
    }
}

三、双向队列ArrayDeque

1、常用API

1)、双向队列操作

插入元素:

    public void addFirst(E e)//向队头插入元素
        
    public void addLast(E e)//向队尾插入元素
        
    public boolean offerFirst(E e)
        
    public boolean offerLast(E e)         

移除元素:

    public E removeFirst()//返回并移除队头元素
        
    public E removeLast()//返回并移除队尾元素
        
    public E pollFirst()
        
    public E pollLast()        

获取元素:

    public E getFirst()//获取队头元素但不移除,如果队列无元素则抛出异常NoSuchElementException
    
    public E getLast()//获取队尾元素但不移除,如果队列无元素则抛出异常NoSuchElementException
    
    public E peekFirst()//获取队头元素但不移除,如果队列无元素,则返回null  
    
    public E peekLast()//获取队尾元素但不移除,如果队列无元素,则返回null    
2)、栈操作
    //弹出栈中元素,也就是返回并移除队头元素
	public E pop() {
        return removeFirst();
    }

	//向栈中压入元素,也就是向队头增加元素
    public void push(E e) {
        addFirst(e);
    }

2、ArrayDeque源码分析

1)重要属性

    //存储元素的数组
	transient Object[] elements; 

    //队列头位置的索引
    transient int head;

    //队列尾位置之后的索引
    transient int tail;

    //最小初始容量
    private static final int MIN_INITIAL_CAPACITY = 8;

2)构造函数

ArrayDeque提供了三个构造函数,一个空参构造函数,默认创建初始容量为16的空双端队列;一个通过传入一个int类型的参数来指定双端队列的初始容量;一个通过传入一个集合(Collection)作为参数初始化ArrayDeque

    public ArrayDeque() {
        elements = new Object[16];
    }

    public ArrayDeque(int numElements) {
        allocateElements(numElements);
    }

    public ArrayDeque(Collection<? extends E> c) {
        allocateElements(c.size());
        addAll(c);
    }

ArrayDeque的容量和HashMap一样总是为 2 n 2^n 2n,如果传入的numElements小于8,则双端队列容量为8,否则计算出一个最接近同时大于numElements的 2 n 2^n 2n

    private void allocateElements(int numElements) {
        elements = new Object[calculateSize(numElements)];
    }

    private static int calculateSize(int numElements) {
        int initialCapacity = MIN_INITIAL_CAPACITY;
        if (numElements >= initialCapacity) {
            initialCapacity = numElements;
            //initialCapacity=(initialCapacity|initialCapacity>>>1)
            initialCapacity |= (initialCapacity >>>  1);
            initialCapacity |= (initialCapacity >>>  2);
            initialCapacity |= (initialCapacity >>>  4);
            initialCapacity |= (initialCapacity >>>  8);
            initialCapacity |= (initialCapacity >>> 16);
            initialCapacity++;

            if (initialCapacity < 0)   
                initialCapacity >>>= 1;
        }
        return initialCapacity;
    }

int类型占4个字节,32位。对于initialCapacity,假设它的位数为n,那么第n位必然为1。第1步计算之后,initialCapacity的第n位和第n-1位必然为1。第2步计算之后,initialCapacity的第n、n-1位和第n-2、n-3位必然为1。以此类推,当计算完第5步时,initialCapacity的第n到0位全部为1。最后进行第6步计算,initialCapacity的第n+1位为1,第n到0位全部为0。此时,initialCapacity的值为 2 ( n + 1 ) 2^{(n+1)} 2(n+1),是一个2的幂。最后,如果计算出的值是 2 31 2^{31} 231(小于0),那么右移1位,取 2 30 2^{30} 230

3)扩容方法

    private void doubleCapacity() {
        //assert关键字后面跟一个布尔表达式,如果表达式的值为true,继续执行;如果表达式的值为false,则抛出异常AssertionError
        assert head == tail;
        int p = head;
        int n = elements.length;
        int r = n - p; // number of elements to the right of p
        //新数组长度为旧数组长度的两倍
        int newCapacity = n << 1;
        if (newCapacity < 0)
            throw new IllegalStateException("Sorry, deque too big");
        Object[] a = new Object[newCapacity];
        //将旧数组head之后的元素拷贝到新数组中
        System.arraycopy(elements, p, a, 0, r);
        //将旧数组下标0到head之间的元素拷贝到新数组中
        System.arraycopy(elements, 0, a, r, p);
        elements = a;
        //head指向0,tail指向旧数组长度表示尾位置插入下一个元素的位置
        head = 0;
        tail = n;
    }

在这里插入图片描述

4)addFirst(E e)方法

    public void addFirst(E e) {
        if (e == null)
            throw new NullPointerException();
        //因为ArrayDeque的容量和HashMap一样总是为2^n,所以elements.length-1就是(2^n-1).当旧head为0时,(head-1)就是-1(在计算机中表示为32位全部为1)。我们知道当1&1时等于1,其它都等于0.所以,当旧head为0时,(head-1)&(elements.length-1)的结果就是(elements.length-1).当旧head大于0时,(head-1)&(elements.length-1)的结果就是(head-1).elements数组的容量为2的幂可以保证任何一个数按位与(&)数组的容量-1的结果一定在0到数组容量-1的范围之内.这就是elements数组的容量总是2的幂的原因
        elements[head = (head - 1) & (elements.length - 1)] = e;
        //如果head等于tail则进行扩容
        if (head == tail)
            doubleCapacity();
    }

4)addLast(E e)方法

    public void addLast(E e) {
        if (e == null)
            throw new NullPointerException();
        elements[tail] = e;
        //计算新的tail,(tail+1)&(elements.length-1)保证tail==(elements.length-1)时新的tail=0,如果tail等于head则进行扩容
        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
            doubleCapacity();
    }

5)removeFirst()方法

    public E removeFirst() {
        E x = pollFirst();
        if (x == null)
            throw new NoSuchElementException();
        return x;
    }

    public E pollFirst() {
        int h = head;
        @SuppressWarnings("unchecked")
        E result = (E) elements[h];
        if (result == null)
            return null;
        elements[h] = null;     
        //计算新的head,(head+1)&(elements.length-1)保证head==(elements.length-1)时新的head=0
        head = (h + 1) & (elements.length - 1);
        return result;
    }

6)removeLast()方法

    public E removeLast() {
        E x = pollLast();
        if (x == null)
            throw new NoSuchElementException();
        return x;
    }

    public E pollLast() {
        int t = (tail - 1) & (elements.length - 1);
        @SuppressWarnings("unchecked")
        E result = (E) elements[t];
        if (result == null)
            return null;
        elements[t] = null;
        tail = t;
        return result;
    }

四、优先队列PriorityQueue

1、常用API

        //小顶堆(最小最优先)
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();
        //大顶堆
        PriorityQueue<Integer> maxHeap = new PriorityQueue<>(11, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });
        PriorityQueue<Integer> maxHeap2 = new PriorityQueue<>(11, (x, y) -> (y - x));
    public boolean offer(E e)//将指定元素插入到优先队列中
        
    public E peek()//获取但不移除此队列的头,如果此队列为空则返回null
       
    public E poll()//获取并移除此队列的头,如果此队列为空则返回null        

2、堆

Java中的PriorityQueue是通过堆来实现的

堆:堆是一个完全二叉树,且堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值

完全二叉树:除了最后一层,其它层的节点个数都是满的,最后一层的节点都靠左排列

对于每个节点的值都大于等于子树中每个节点值的堆,叫作大顶堆。对于每个节点的值都小于等于子树中每个节点值的堆,叫作小顶堆

在这里插入图片描述

上图中第1个和第2个是大顶堆,第3个是小顶堆,第4个不是堆

完全二叉树的最后一个非叶子结点的下标是 ( n − 2 ) / 2 (n-2)/2 (n2)/2
完全二叉树中如果一个非叶子结点的下标是i,则它的父结点下标是 ( i − 1 ) / 2 (i-1)/2 (i1)/2,它的左孩子下标是 2 ∗ i + 1 2*i+1 2i+1,右孩子下标是 2 ∗ i + 2 2*i+2 2i+2

3、源码分析

PriorityQueue默认实现是一个小顶堆,接下来的讲解以小顶堆为例进行分析

1)、重要属性

	//默认容量11
    private static final int DEFAULT_INITIAL_CAPACITY = 11;

    //堆的存储结构,存储元素
    transient Object[] queue; 

    //当前存储的元素数量
    private int size = 0;

    //比较器,确定优先级高低
    private final Comparator<? super E> comparator;

2)、 扩容方法

    private void grow(int minCapacity) {
        //获取当前容量
        int oldCapacity = queue.length;
        //如果旧容量小于64,则增加旧容量+2的大小
        //如果旧容量大于等于64,则增加旧容量的一半大小
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                         (oldCapacity + 2) :
                                         (oldCapacity >> 1));
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        //复制已存储的数据
        queue = Arrays.copyOf(queue, newCapacity);
    }

3)、offer(E e)方法

    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        //记录当前队列中元素的个数
        int i = size;
        //如果当前元素个数大于等于队列底层数组的长度,则进行扩容
        if (i >= queue.length)
            grow(i + 1);
        //元素个数+1
        size = i + 1;
        //如果队列中没有元素,则将元素e直接添加到数组下标为0的位置
        if (i == 0)
            queue[0] = e;
        //新元素都是增加在数组尾部,然后进行上移操作,即构建堆
        else
            siftUp(i, e);
        return true;
    }
    private void siftUp(int k, E x) {
        if (comparator != null)
            //采用自定义的比较器
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }
    //上移就是不断和父节点比较
	private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            //父节点下标
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            //如果新增的元素k比其父节点e大,则不需要上移,跳出循环结束
            if (key.compareTo((E) e) >= 0)
                break;
            //x比父节点小,则需要进行上移
            //交换元素x和父节点e的位置
            queue[k] = e;
            //将新插入元素的位置k指向父亲的位置,进行下一层循环
            k = parent;
        }
        queue[k] = key;
    }

每次增加元素,都要进行堆化来保证堆序

在这里插入图片描述
在这里插入图片描述

结合上面的图解,来说明一下二叉堆的添加元素过程:

1)将元素2添加在最后一个位置(队尾)(图2)

2)由于2比其父节点6要小,所以将元素2上移,交换2和6的位置(图3)

3) 然后由于2比5小,继续将2上移,交换2和5的位置(图4),此时2大于其父节点(根节点)1,结束

4)、poll()方法

    public E poll() {
        if (size == 0)
            return null;
        //队列元素个数-1
        int s = --size;
        modCount++;
        //队头的元素
        E result = (E) queue[0];
        //队尾的元素
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            //如果队列中不止队尾一个元素,则进行下移操作
            siftDown(0, x);
        return result;
    }
    private void siftDown(int k, E x) {
        if (comparator != null)
            //采用自定义的比较器
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }
    private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        //最后一个非叶子节点下标
        int half = size >>> 1;        
        while (k < half) {
            //左孩子
            int child = (k << 1) + 1; 
            Object c = queue[child];
            //右孩子
            int right = child + 1;
            //对比左孩子和右孩子取其中更小的节点
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                c = queue[child = right];
            //如果队尾元素比左右孩子都要小,则不需下移,结束
            if (key.compareTo((E) c) <= 0)
                break;
            //和左孩子和右孩子中更小的节点交换位置
            queue[k] = c;
            //将根元素位置k指向最小孩子的位置,进入下层循环
            k = child;
        }
        //找到队尾元素x的合适位置k之后进行赋值
        queue[k] = key;
    }

在这里插入图片描述在这里插入图片描述在这里插入图片描述

结合上面的图解,来说明一下二叉堆的出队过程:

1)将找出队尾的元素8,并将它在队尾位置上删除(图2)

2)此时队尾元素8比根元素1的最小子节点3要大,所以将元素1下移,交换1和3的位置(图3)

3)然后此时队尾元素8比元素1的最小子节点4要大,继续将1下移,交换1和4的位置(图4)

4)然后此时根元素8比元素1的最小子节点9要小,不需要下移,直接将根元素8赋值给此时元素1的位置,1被覆盖则相当于删除(图5),结束

参考:https://www.cnblogs.com/linghu-java/p/9467805.html

五、队列相关题目

1、LeetCode703:数据流中的第K大元素

设计一个找到数据流中第K大元素的类

public class KthLargest {
    private PriorityQueue<Integer> queue;
    private int k;

    public KthLargest(int k, int[] nums) {
        //小顶堆
        this.queue = new PriorityQueue<Integer>(k);
        this.k = k;
        for (int i = 0; i < nums.length; ++i) {
            add(nums[i]);
        }
    }

    public int add(int val) {
        if (queue.size() < k) {
            queue.offer(val);
        } else if (queue.peek() < val) {
            queue.poll();
            queue.offer(val);
        }
        return queue.peek();
    }
}

2、LeetCode239:滑动窗口最大值

给定一个数组nums,有一个大小为k的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的k个数字。滑动窗口每次只向右移动一位

返回滑动窗口中的最大值

示例:

输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7] 

解释:

  滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

题解:

    public int[] maxSlidingWindow(int[] nums, int k) {
        int n = nums.length;
        if (n * k == 0) return new int[0];
        if (k == 1) return nums;
        //双向队列,保存当前窗口最大值的数组位置,保证队列中数组位置的数按从大到小排序
        LinkedList<Integer> list = new LinkedList<>();
        int[] result = new int[n - k + 1];
        for (int i = 0; i < n; ++i) {
            //如果前面的数小于nums[i]弹出
            while (!list.isEmpty() && nums[i] >= nums[list.peekLast()]) {
                list.pollLast();
            }
            //添加当前值对应的数组下标
            list.addLast(i);
            //等到窗口长度为k时,下次移动在删除过期数值
            if (list.peek() <= i - k) {
                list.poll();
            }
            //窗口长度为k时,再保存当前窗口中最大值
            if (i - k + 1 >= 0) {
                result[i - k + 1] = nums[list.peek()];
            }

        }
        return result;
    }

常用数据结构的时间、空间复杂度:

在这里插入图片描述

https://www.bigocheatsheet.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邋遢的流浪剑客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值