pytorch基础-优化模型参数(6)

现在我们有了模型和数据,是时候通过优化数据参数来训练、验证和测试我们的模型了。训练一个模型就是一个迭代的过程,在每次迭代(称为epoch)中,模型对输出进行猜测,计算猜测中的误差(损失),收集误差对其参数的导数(前一节中自动微分一样),并使用梯度下降优化这些参数。

1、先决条件代码

从前面关于数据集和数据装载器以及构建模型的章节中加载代码。

 PyTorch基础-自定义数据集和数据加载器(2)_一只小小的土拨鼠的博客-CSDN博客

 pytorch基础-构建简单的神经网络(4)_一只小小的土拨鼠的博客-CSDN博客

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值