Pytorch搭建常见分类网络模型------VGG、Googlenet、ResNet50 、MobileNetV2(3)

接上一节内容:Pytorch搭建常见分类网络模型------VGG、Googlenet、ResNet50 、MobileNetV2(2)_一只小小的土拨鼠的博客-CSDN博客

前言:深层神经网络的每一层分别对应于提取不同层次的特征信息,有低层,中层和高层,而网络越深的时候,提取到的不同层次的信息会越多,而不同层次间的层次信息的组合也会越多。可是深层神经网络却出现了梯度消失和梯度爆炸的问题,网络的效果变得越来越差,甚至出现了网络的退化问题,传统对应的解决方案则是数据的初始化(normlized initializatiton)和(batch normlization)正则化,但是这样虽然解决了梯度的问题,却带来了另外的问题,就是网络性能的退化问题,深度加深了,错误率却上升了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值